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Pieri rule for the affine flag variety

Seung Jin Lee †

School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 130-722, Republic
of Korea.

Abstract. We prove the affine Pieri rule for the cohomology of the affine flag variety conjectured by Lam, Lapointe,
Morse and Shimozono. We study the cap operator on the affine nilHecke ring that is motivated by Kostant and
Kumar’s work on the equivariant cohomology of the affine flag variety. We show that the cap operators for Pieri
elements are the same as Pieri operators defined by Berg, Saliola and Serrano. This establishes the affine Pieri rule.

Résumé. Nous prouvons la règle affine Pieri pour la cohomologie de la variété affine de drapeau conjecturé par Lam,
Lapointe, Morse et Shimozono. Nous étudions l’opérateur de bouchon sur l’affine nilHecke anneau qui est motivé
par le travail de Kostant et Kumar sur la cohomologie équivariante de la variété affine de drapeau. Nous montrons
que les opérateurs de capitalisation pour les éléments Pieri sont les mêmes que les opérateurs Pieri définies par Berg,
Saliola et Serrano. Ceci établit la règle affine Pieri.
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1 Introduction
Affine Schubert calculus is a subject that ties combinatorics, algebraic geometry and representation the-
ory together. Its modern development is motivated by the relation between k-Schur functions and the
(co)homology of the affine Grassmannian of SL(n). k-Schur functions were introduced by Lapointe,
Lascoux, Morse in [LLM03] in the study of Macdonald polynomial positivity, a mostly combinatorial
branch of symmetric function theory.

Peterson [Pet97] identified the equivariant homology of the affine Grassmannian with a subalgebra of
the affine nilHecke algebra A, now called the Peterson algebra. Lam proved that k-Schur functions can
be identified with the Schubert classes of the homology of the affine Grassmannian of SL(n) in [Lam08]
. The nilHecke ring acts as divided difference operators on the equivariant cohomology of Kac-Moody
partial flag varieties. By using the correspondence, one can investigate problems about the (co)homology
of the affine Grassmannian of SL(n) by translating them into the theory of k-Schur functions and un-
derstanding the combinatorics of k-Schur functions. There are affine analogues of the classical theory of
Pieri rules, tableaux, and Stanley symmetric functions. See [Lam06, ML05, ML07].
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Lam, Lapointe, Morse and Shimozono introduced the strong Schur functions, indexed by elements
in the affine symmetric group Waf in [LLMS10]. These strong Schur functions generalize the k-Schur
functions combinatorially. They conjectured a series of properties of strong Schur functions such as the
symmetry of the strong Schur functions. Berg, Saliola and Serrano studied the Pieri operators acting on
the affine nilCoxeter ring A0 in [BSS13, BSS14] to establish some of conjectures in [LLMS10].

In this extended abstract, we describe ideas for proving the affine Pieri rule for the cohomology of
the affine flag variety conjectured in [LLMS10]. We introduce the cap operators acting on the affine
nilCoxeter ring A0 by investigating the work in [KK86] and show that the cap operators for Pieri elements
are the same as the Pieri operators defined in [BSS14] by using the strong strips. The affine Pieri rule
gives us geometric interpretation of the skew strong Schur functions as an affine Grassmannian part of the
cap product of the Schubert classes in (co)homology of the affine flag variety. We now describe these two
operators.

1.1 Cap operators

Let us consider the affine type A root datum and corresponding Kac-Moody flag variety F̃ l (See [KK86]
for details). Let {ξw|w ∈ Waf} denote the Schubert basis for the equivariant cohomology H∗T (F̃ l) of
F̃ l. One of main problems in affine Schubert calculus is to find a combinatorial formula for the structure
constants pwu,v where ξuξv =

∑
w p

w
u,vξ

w. In [KK86], Kumar and Kostant identified the torus-equivariant
cohomology H∗T (F̃ l) of the affine flag variety and the dual of the nilHecke ring. Using this connection,
one can compute the structure constants pwu,v by calculating the coproduct structure constants of A. More
precisely, we have

∆(Aw) =
∑

u,v∈Waf

pwu,vAu ⊗Av.

For u ∈Waf, a cap operator Du on A0 is defined by

Du(Aw) =
∑
v∈Waf

`(v)=`(w)−`(u)

pwu,vAv.

Geometrically, the cap operator is the cap product on the ordinary homology and cohomology of the affine
flag variety. More precisely, the cap operator Du can be considered as an element in H∗(F̃ l) and Aw can
be considered in H∗(F̃ l) so that the cap product H∗(F̃ l) × H∗(F̃ l) → H∗(F̃ l) can be described by
(Du, Aw) = Du(Aw). Note that the cap operator only keep track of ordinary cohomology since pwu,v is
constant when `(v) = `(w)− `(u).
Let ρi be the Pieri element si−1 . . . s1s0 in Waf where indices are taken modulo n. We study the cap
operators Dρi for ρi and show that Dρi satisfy the properties of the Pieri operators D′i that Berg, Saliola
and Serrano proved in [BSS14]. This establishes the following main theorems equivalent to the affine
Pieri rule conjectured in [LLMS10].

Theorem 1.1 For w, u ∈ Waf with i = `(w) − `(u) ∈ N, pwρi,u counts the number of strong strips from
w to u.
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Theorem 1.2 Let w ∈Waf and 1 ≤ m. Then in H∗(F̃ l) we have

ξρmξw =
∑
S

ξoutside(S),

where the sum runs over strong strips S of size m such that inside(S) = w.

Note that Theorem 1.1 and 1.2 are equivalent. As a corollary, one can compute pwv,u for v = ρ−1m or
v = si+m−1si+m−2 · · · si+1si for any i by applying automorphisms on Dynkin diagram of affine type A,
namely, the map j 7→ −j and j 7→ j + i for j ∈ Z/nZ.

The paper is structured as follows. In section 2, we recall some notions about the affine symmetric
group, k-Schur functions, strong Schur functions and root systems. In section 3, we define the affine
nilHecke ringA and study its properties. In section 4, we recall some statements concerning the affine flag
variety and its equivariant cohomology as well as the relationship between the equivariant cohomology
of affine flag variety and the coproduct structure of the affine nilHecke ring. In section 5, we define the
cap operator. We show that these cap operators for Pieri elements agree with the Pieri operators defined
by Berg, Saliola and Serrano. We also prove the affine Pieri rule for the ordinary cohomology of the
affine flag variety. In section 6, we apply the affine Pieri rule to show that the structure constants pwu,v for
the cohomology of the affine flag variety can be described in terms of strong Schur functions when u is
0-Grassmannian. This also gives a geometric interpretation of the skew strong Schur functions.

2 Preliminaries

2.1 Affine symmetric group

Positive integers n ≥ 2 and k = n− 1 will be fixed throughout the extended abstract. Let Waf denote the
affine symmetric group with simple generators s0, s1, . . . , sn−1 satisfying the relations

s2i = 1

sisi+1si = si+1sisi+1

sisj = sjsi if i− j 6= 1,−1.

where indices are taken modulo n. An element of the affine symmetric group may be written as a word in
the generators si. A reduced word of the element is a word of minimal length. The length of w, denoted
`(w), is the number of generators in any reduced word of w.
The Bruhat order, also called strong order, on affine symmetric group elements is a partial order where
u < w if there is a reduced word for u that is a subword of a reduced word for w. If u < w and
`(u) = `(w) − 1, we write u l w. It is well-known that u l w if and only if there exists a reflection
t ∈ {wsiw−1|w ∈ Waf, 0 ≤ i < n} such that w = ut and `(u) = `(w) − 1. For type A, the set
{wsiw−1|w ∈Waf} consists of transpositions tij . See [BB] for instance.
The subgroup of Waf generated by {s1, · · · , sn−1} is naturally isomorphic to the symmetric group W .
The 0-Grassmannian elements are minimal length coset representatives of Waf/W .
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2.2 Symmetric functions

Let Λ denote the ring of symmetric functions. For a partition λ, we let mλ, hλ, eλ, sλ denote the mono-
mial, homogeneous, elementary and Schur symmetric functions, respectively, indexed by λ. Each of these
families forms a basis of Λ.
Let Λ(k) denote the subalgebra generated by h1, h2, . . . , hk. The elements hλ with λ1 ≤ k form a basis of
Λ(k). Let Λ(k) = Λ/Ik denote the quotient of Λ by the ideal Ik generated by mλ with λ1 > k. The image
of elements mλ with λ1 ≤ k form a basis of Λ(k). Lam [Lam08, Theorem 7.1] showed that Λ(k)(resp.
Λ(k)) are isomorphic to homology(resp. cohomology) of affine Grassmannian as Hopf-algebras.

2.3 k-Schur and Strong Schur functions

There are many conjecturally equivalent definitions of k-Schur functions in [LLM+14]. We follow the
definition of k-Schur functions in [LLMS10] using strong strips. Note that the marking of strong covers
and strong strips defined in this extended abstract follows the notation of [BSS13]. This differs from the
definition of strong covers and strips in [LLMS10] by reversing direction.

A marked strong cover C =
(
u

a−→ v
)

consists of u, v ∈Waf and an integer a such that u = vtij , vl
u, a = u(j) = v(i) where i ≤ 0 < j. We use the notation inside(C) = u and outside(C) = v.
A strong strip S of length i from u to v, denoted by u −→(i) v, is a path

u
a1−→ u1

a2−→ · · · ai−→ ui = v

where a1 > a2 > . . . > ai. We let inside(S) = u, outside(S) = v, and size(S) = i.
A strong tableau is a sequence T = (S1, S2, . . .) of strong strips Si such that outside(Sj) = inside(Sj+1)
for all j ∈ Z>0 and size(Si) = 0 for all sufficiently large i. We define inside(T ) = inside(S1) and
outside(T ) = outside(Si) for i large. The weight wt(T ) of T is the sequence

wt(T ) = (size(S1), size(S2), . . .).

We say that T has shape u/v where u = inside(T ) and v = outside(T ) so that we have u > v.

Definition 2.1 For fixed u, v ∈Waf, define the Strong Schur function

Strongu/v(x) =
∑
T

xwt(T )

where T runs over the strong tableaux of shape u/v.

If u is 0-Grassmannian and v is the identity element, Strongu(x) is a k-Schur function s(k)c(u) where c is
a bijection between the set of 0-Grassmannian elements and the set of k-bounded partitions. For details,
see [LLMS10] for instance.
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2.4 Root systems
We shall assume basic familiarity with Weyl groups, root systems, and weights. See [Hum90] for details.
Let A = (aij)i,j∈Iaf denote an affine Cartan matrix, where Iaf = I ∪{0}, so that (aij)i,j∈I is correspond-
ing finite Cartan matrix. For type Ãn−1(corresponding to Waf), we have Iaf = Z/nZ and

aij =

 2 if i = j
−1 if |i− j| = 1

0 otherwise.

Let R be the root system for W . Let R+, R− denote the set of positive roots, negative roots respectively.
Let {αi | i ∈ I} denote the simple roots and {α∨i | i ∈ I} denote the simple coroots. Let θ denote the
highest root α1 + α2 + . . .+ αn−1 of R+.
Let Raf and R+

af denote the affine root system and positive affine roots. The positive simple affine roots
(resp. coroots) are {αi | i ∈ Iaf} (resp. {α∨i | i ∈ Iaf}). The null root δ is given by δ = α0 + θ =
α0 + · · ·+αn−1. Similarily, the canonical central element c is given by α∨0 + · · ·+α∨n−1. A root α is real
if it is in Waf-orbit of the simple affine roots, and imaginary otherwise. The imaginary roots are exactly
{kδ | k ∈ Z\{0}}. Every real affine root is of the form α+ kδ, where α ∈ R and k ∈ Z. The root α+ kδ
is positive if k > 0, or if k = 0 and α ∈ R+. Let R+

re denote the set of positive roots in Raf.
Let Q = ⊕i∈IZ · αi denote the root lattice and let Q∨ = ⊕i∈IZ · α∨i denote the coroot lattice. Let P and
P∨ be the weight lattice and coweight lattice respectively. We have inclusions Q ⊂ P,Q∨ ⊂ P∨ and a
map Qaf = ⊕i∈IafZ · αi → P given by sending δ to 0. Let 〈·, ·〉 denote the pairing between P and P∨

satisfying 〈α∨i , αj〉 = aij .

For a real root α, we let sα denote the corresponding reflection, defined by sα = wsiw
−1 if α = w ·αi.

The reflection sα acts on weights by sαλ = λ − 〈α, λ〉α. For a strong cover v l w, let αv,w denote the
unique positive root satisfying the equation v−1w = sav,w .

3 NilHecke algebra
3.1 Definition
Let S = Sym(P ) be the polynomial ring having a variable for each free generator of P and let F =
Frac(S) be the fraction field.

Define the F -vector space FWaf =
⊕

w∈Waf
Fw with basis Waf, with product given by

(pv)(qw) = (p(v · q)) (vw) for p, q ∈ F and v, w ∈Waf.

For any real root α ∈ Rre define the element Aα ∈ FWaf by

Aα = α−1(1− sα).

We write
Ai = Aαi for i ∈ I.
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For α = w · αi ∈ R+
re , we have

wAiw
−1 = Aα

sαAα = Aα
Aαsα = −Aα
A2
α = 0.

The Ai satisfy the braid relations as the si in Waf, i.e., AiAi+1Ai = Ai+1AiAi+1. Therefore it makes
sense to define

Aw = Ai1 · · ·Ail where
w = si1 · · · sil is a reduced decomposition.

One can check that

AvAw =

{
Avw if `(vw) = `(v) + `(w)
0 otherwise.

The nilCoxeter algebra A0 is the subring of FWaf generated by Ai over Z for i ∈ Iaf. The set {Aw|w ∈
Waf} forms a basis of A0 over Z. The nilHecke algebra A is the subring of FWaf generated by S and A0.

Remark 3.1 The affine nilHecke algebra A defined above is slightly different from those defined in
[KK86]. Kostant and Kumar set S = Sym(Paf) instead of Sym(P ) where Paf denote the affine weight
lattice. We have a projection Paf → P and the map induces Sym(Paf) → Sym(P ) which is compatible
with Theorem 4.1. The image of the null root δ = α0 + θ in P is 0. Geometric interpretation of P and Paf

will be discussed in section 4.

3.2 Cyclically decreasing elements and Peterson algebra
A word si1si2 · · · sil with indices in Z/nZ is called cyclically decreasing if each letter occurs at most
once and whenever si and si+1 both occurs in the word, si+1 precedes si. For J  Z/nZ there is the
unique cyclically decreasing element wJ with letters {sj |j ∈ J}. For i ∈ {0, 1, . . . , n− 1}, let

hi =
∑
J⊂Iaf
|J|=i

AwJ ∈ A0

where h0 = 1 and hi = 0 for i < 0 by convention. In [Lam06], Lam showed that the elements {hi}i<n
commute and freely generate a subalgebra B of A0 called affine Fomin-Stanley algebra. It is well-known
that B is isomorphic to Λ(k) via the map sending hi to hi. Therefore, the set {hλ = hλ1

. . .hλl |λ1 ≤ k}
forms a basis of B.

3.3 Coproduct structure of A
There is a coproduct structure on the nilHecke ring A. Kumar and Kostant showed that the structure
constants of the coproduct in A are the same as the structure constants of the equivariant cohomology ring
of F̃ l. Details and proofs can be found in [KK86, LLM+14, Pet97].
Let ∆ : FWaf → FWaf ⊗F FWaf be the left F -linear map defined by

∆(w) = w ⊗ w for all w ∈Waf



Pieri rule for the affine flag variety 91

Theorem 3.2 The map ∆ : FWaf → FWaf ⊗F FWaf induces the unique left S-module homomorphism
∆ : A→ A⊗S A such that

∆(Ai) = Ai ⊗ 1 + si ⊗Ai
= 1⊗Ai +Ai ⊗ si for all i ∈ I

∆(ab) = ∆(a)∆(b) for all a, b ∈ A.

For w, u1, u2 ∈Waf, the equivariant Schubert structure constants pwu1,u2
∈ S are defined as the coeffi-

cients in the expansion ∆(Aw) =
∑
pwu1,u2

Au1
⊗Au2

. The followings are properties of pwu1,u2
.

Theorem 3.3

1. pwu1,u2
= 0 unless w ≥ u1 and w ≥ u2.

2. pwu1,u2
is homogeneous of degree `(u1) + `(u2)− `(w).

3. [Gra01, Kum02] (−1)`(u1)+`(u2)−`(w)pwu1,u2
∈ Z≥0[αi|i ∈ Iaf].

The last property in Theorem 3.3 is called Graham positivity. One can use Theorem 3.2 to compute pwu1,u2

explicitly.

Theorem 3.4 [KK86] Let w = si1si2 . . . sil and l = `(w). Then

pwu1,u2
=

∑
Asij1

Asij2
...Asijk

=Au1

j1<j2<...<jk

l∏
p=1

fj1,j2,...,jk(Asip )

∣∣∣∣∣
Au2

where fj1,j2,...,jk(Asip ) = sip if p ∈ {j1, j2, . . . , jk} and = Asip otherwise, and
∑
cwAw|Au = cu.

4 Affine flag varieties
In this section, we define the Kac-Moody flag variety F̃ l and establish the relationship between the equiv-
ariant cohomology of F̃ l and the coproduct structure on A. There are two definitions of Kac-Moody flag
variety F̃ l in [LLM+14], but we only recall F̃ l as the Kac-Moody flag ind-variety in [KK86, Kum02].
Let Gaf denote the Kac-Moody group of affine type associated with SL(n) and let Baf denote its Borel
subgroup. The Kac-Moody flag ind-variety F̃ l = Gaf/Baf is paved by cells BafẇBaf/Baf ∼= C`(w) whose
closure Xw is called the Schubert variety. Schubert variety defines a Schubert class [Xw]Taf ∈ H∗Taf

(F̃ l)

where Taf is the maximal torus in Baf. For our setting, we consider H∗T (F̃ l) where T is a maximal torus
in SL(n). Kumar and Kostant [KK86] identified the equivariant cohomology ring of F̃ l with the dual of
nilHecke ring A. By restricting the group action from Taf to T , this identification shows that the structure
constant of H∗T (F̃ l) is the same as pwu,v defined in Section 3.3.
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Theorem 4.1 [KK86] The T -equivariant cohomology of F̃ l has a basis {[Xw]T ∈ H∗T (F̃ l)} over S ∼=
H∗T (pt). Moreover, the structure constants of H∗T (F̃ l) are pwu1,u2

, i.e.,

[Xu1 ]T [Xu2 ]T =
∑

pwu1,u2
[Xw]T .

Remark 4.2 The ordinary cohomology of F̃ l has a basis {[Xw] ∈ H∗(F̃ l)} over Z and corresponding
structure constants are just φ(pwu1,u2

) where φ : S → Z is the evaluation at 0.

5 Pieri operators and Affine Pieri rule for type A
Let φ : S → Z denote the map sending a polynomial to its constant term, called the evaluation map at 0.
It extends to the map φ : A→ A0 given by φ(

∑
w awAw) = φ(aw)Aw. Pieri elements ρi are defined by

si−1si−2 . . . s1s0 for i > 0. For w ∈Waf, let us define the cap operator Dw on A (and A0) by

Dw(Av) := φ

( ∑
u∈Waf

pvw,uAu

)
=

∑
u∈Waf

`(u)=`(v)−`(w)

pvw,uAu.

If w = ρi, we call Dρi the Pieri operator and denote by Di.
Note that pvw,u ∈ Z≥0 when `(v) = `(w) + `(u) by Theorem 3.3. Finding a combinatorial formula

for such pvw,u is one of the important problems in Schubert calculus and it is not completely known even
for finite flag varieties. In this section, we will describe main ideas showing that Di is the same as the
Pieri operator D′i defined by Berg, Saliola, Serrano in [BSS14]. This identification gives a combinatorial
description of the Pieri rule for the ordinary cohomology of F̃ l and therefore proves Theorem 1.1.
Let us state properties of D′i described in [BSS14].

Theorem 5.1 [BSS14, Theorem 4.8] Suppose w ∈Waf and v ∈W . Then

D′i(AwAv) = D′i(Aw)Av.

Lemma 5.2 [BSS14, Lemma 4.5] For r < n and i ≥ 1,

D′i(hr) = hr−i.

Theorem 5.3 [BSS14, Proposition 4.3] For p < n,w ∈Waf and i ≥ 1, we have

D′i(hpAw) =

i∑
j=0

D′j(hp)D
′
i−j(Aw) =

i∑
j=0

hp−jD
′
i−j(Aw).

For w ∈ Waf, there is a unique decompostion w = wλw(0) where wλ is 0-Grassmannian and w(0) ∈
W . Note that λ = c(wλ) where c is the bijection between 0-Grassmannian elements and k-bounded
partitions mentioned in section 2. In this setup, the set {hλAw(0) : w = wλw(0) ∈Waf} forms a basis of
A (See [BSS14]). This follows from the fact that hλ has the unique 0-Grassmannian termAwλ . Therefore,
above theorems uniquely determine D′i. It turns out that the same theorems hold for Di. This implies that
Di = D′i and Theorem 1.1 follows.
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Theorem 5.4 Suppose w ∈Waf and v ∈W . Then

Di(AwAv) = Di(Aw)Av

Lemma 5.5 [Lam08, Lemma 7.7] For r < n,

φ(∆(hr)) =
∑

0≤j≤r

hr−j ⊗ hj .

Theorem 5.6 For r < n and all i ≥ 1,
Di(hr) = hr−i.

In order to prove analogue of Theorem 5.3 for Di, we need the following lemmas.

Lemma 5.7 [Lam08, Lemma 7.2] Let b ∈ B and s ∈ S. Then

φ(b · s) = φ(s)b = b · φ(s).

Lemma 5.8 Let ψ : Waf → Waf be the group automorphism defined by si 7→ si−1. The automorphism
induces the ring automorphism ψ : A0 → A0. For b ∈ B, we have

ψ(b) = b.

Theorem 5.9 For p < n,w ∈Waf and i ≥ 1, we have

Di(hpAw) =

i∑
j=0

Dj(hp)Di−j(Aw).

Theorems 5.4, 5.6 and 5.9 imply that Di = D′i, hence Theorem 1.1.

6 Applications
Let W 0 denote the set of 0-Grassmannian elements in Waf. In this section, we describe how Theorem 1.1
implies the following conjecture, as stated in [LLMS10].

Theorem 6.1 [LLMS10, Conjecture 4.18] Let w, u ∈Waf be two affine permutations. Then

1. Strongw/u(x) ∈ Λ.

2. Strongw/u(x) ∈ Λ(n).

3. Strongw/u(x) =
∑
v∈W 0 pwu,vStrongv(x).

Note that (1), (2) of Theorem 6.1 and (3) whenw, v are inW 0 are proved in [BSS14]. To be more precise,
they showed that for w, v, u ∈ W 0, pwu,v is the coefficient of F̃w in F̃uF̃v , where F̃w is the affine Stanley
symmetric function labeled by w. Lam, Lapointe, Morse and Shimozono introduced weak Schur functions
in [LLMS10] defined by

Weakw/u(x) =
∑
λ

〈hλAu, Aw〉A0
mλ(x)
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for w, u ∈ Waf where the summation is over all k-bounded partitions and 〈·, ·〉A0
is the inner product on

A0 satisfying 〈Aw1
, Aw2

〉A0
= δw1,w2

. If w ∈W 0 and v is the identity element, Weakw/u(x) is the affine
Stanley symmetric function F̃w.
Let Gr denote the affine Grassmannian associated with SL(n,C). Since Gr ∼= Gaf/P for the affine
Kac-Moody group Gaf and its maximal parabolic subgroup P , we have the Schubert bases

{ζw ∈ H∗(Gr,Z) | w ∈W 0}

{ζw ∈ H∗(Gr,Z) | w ∈W 0}.

In [Lam08], Lam showed that ζw and ζw can be represented by k-Schur functions Strongw(x) and affine
Stanley symmetric functions Weakw(x) via the isomorphisms H∗(Gr) ∼= Λ(n) and H∗(Gr) ∼= Λ(n). In
fact, affine insertion described in [LLMS10] offers a duality between weak and strong orders combinato-
rially.
Define the affine Cauchy kernel Ωn(x, y) by

Ωn(x, y) =
∏
i

(
1 + yih1(x) + y2i h2(x) + · · ·+ yn−1i hn−1(x)

)
=

∑
λ:λ1<n

hλ(x)mλ(y)

=
∑
λ

mλ(x)h̃λ(y).

as an element in Λ(n)(x)⊗̂Λ(n)(y) ⊂ Λ(x)⊗̂Λ(n)(y) where h̃λ(y) is the image of hλ(y) in Λ(n). By the
definition of Ωn and Theorem 1.2, we have

Strongw/u(x) = 〈Ωn · ξu, ξw〉F̃ l (1)

where Ωn · ξu ∈ Λ⊗̂H∗(Gr) and 〈·, ·, 〉
F̃ l

is the inner product on H∗(F̃ l) satisfying 〈ξu, ξw〉
F̃ l

= δu,w.
The duality between strong and weak orders produces the following affine Cauchy identity [LLMS10,
Corollary 4.6].

Theorem 6.2 (Affine Cauchy Identity) The following identity holds in the formal power series ring:

Ωn(x, y) =
∑
w∈W 0

Strongw(x)Weakw(y) in Z[[x1, x2, . . . , y1, y2, . . .]]

Theorem 6.1 can be obtained by combining Theorem 6.2 and Equation (1) with slight modification.

Remark 6.3 The skew strong Schur function Strongw/u(x) can be geometrically interpreted as the image

of Du(ξw) under the projection H∗(F̃ l) → H∗(Gr) where Du is the cap product acting on H∗(F̃ l).
Indeed, by the definition of Du and Remark 4.2 we have Du(ξw) =

∑
v p

w
uvξv . Since the projection

H∗(F̃ l) → H∗(Gr) maps ξw to Strongw(x), it sends Du(ξw) to Strongw/u(x) by Theorem 6.1(3).
Therefore, Strongw/u(x) captures the 0-Grassmannian part of Du(ξw). Note that when w is not 0-
Grassmannian, we have Strongw(x) = 0 (See [LLMS10]).
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Note that Lam, Lapointe, Morse and Shimozono defined the marked strong cover wtij → w where
i ≤ l < j for a fixed constant l instead of i ≤ 0 < j in our setup. The affine Pieri rule conjectured in
[LLMS10] is the following.

Theorem 6.4 [LLMS10, Conjecture 4.15] Let w ∈Waf and 1 ≤ m. Then in H∗(F̃ l) we have

ξψ
−l(ρm)ξw =

∑
S

ξoutside(S),

where the sum runs over strong strips S of size m with respect to l such that inside(S) = w.

We can obtain Theorem 6.4 by applying ψl to Theorem 1.2. Recall that ω is the automorphism of Waf
sending si to sn−i. By applying ω to Theorem 1.2, we get the dual affine Pieri rule.

Theorem 6.5 Let w ∈Waf and 1 ≤ m. Then in H∗(F̃ l) we have

ξω(ρm)ξw =
∑
S

ξω(outside(S)),

where the sum runs over strong strips S of size m such that inside(S) = ω(w).

Since the image of ξω(ρm) under the projection H∗(F̃ l) → H∗(Gr) ∼= Λ(n) is Weakω(ρm) = ẽm, the
image of em ∈ Λ(n), so we recover the dual Pieri rule for the affine Grassmannian in [LLMS10].
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