Subwords and Plane Partitions

Zachary Hamakerl| and Nathan Williams.
IMA, University of Minnesota 306 Lind Hall Minneapolis, MN U.S.A. 55455
LaCIM, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, Québec, H3C 3P8, Canada

Abstract

Using the powerful machinery available for reduced words of type B, we demonstrate a bijection between centrally symmetric k-triangulations of a $2(n+k)$-gon and plane partitions of height at most k in a square of size n. This bijection can be viewed as the type B analogue of a bijection for k-triangulations due to L. Serrano and C. Stump.

Résumé. En utilisant la machinerie puissante pour mots réduits de type B, nous démontrons une bijection entre les k-triangulations centralement symétriques d'un $2(n+k)$-gon et les partitions de plans d'hauteur inférieure ou égale à k dans un carré de taille n. Cette bijection peut être considérée comme l'analogue de type B d'une bijection de k-triangulations due à L. Serrano et C. Stump.

Keywords: centrally symmetric k-triangulation, subword complex, plane partition, reduced word, linear extension, insertion, Little bump

1 Introduction

A k-triangulation of a regular convex n-gon is a maximal set of edges of the n-gon such that no $k+1$ of them mutually cross. J. Jonsson showed non-bijectively that the number of k-triangulations of an $(n+2 k+1)$-gon was equal to the number of plane partitions of height at most k in a staircase in [12]. L. Serrano and C. Stump proved this result bijectively in [26], synthesizing work in [4, 8, 21, 34].

Theorem 1 ([26]) There is an explicit bijection between k-triangulations of an $(n+2 k+1)$-gon and plane partitions of height at most k in a staircase of size n.
D. Soll and V. Welker introduced centrally symmetric k-triangulations of a $2 n$-gon as a type B analogue of k-triangulations [27]. They conjectured that the number of centrally symmetric k-triangulations of a $2(n+k)$-gon was equal to the number of plane partitions in an $n \times n \times k$ box (and proved it as a lower bound). Their formula was subsequently proven non-bijectively by M. Rubey and C. Stump [25]. The main result of this abstract may be interpreted as a bijective proof of this fact.

Theorem 2 There is an explicit bijection between centrally symmetric k-triangulations of a $2(n+k)$-gon and plane partitions of height at most k in a square of size n.
1365-8050 © 2015 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

Fig. 1: An example of the bijection in Theorem 2 for $n=3$ and $k=2$. On the left is a 2 -triangulation of a 10-gon; on the right is the corresponding plane partition of height 2 in a square of size 3 .

Examples of Theorems 1 and 2 are given in Figures 2, 3, and 4 .
To explain our approach to the bijection, we provide some additional context. V. Pilaud and M. Pocchiola introduced a duality between the k-stars in a k-triangulation and pseudolines, and showed that k-triangulations may be interpreted as certain pseudoline arrangements [21]. C. Stump rephrased this bijection in Coxeter-theoretic language [30], and a generalization of k-triangulations to all finite Coxeter groups was subsequently defined by C. Ceballos, J.-P. Labbé, and C. Stump [6]. Their construction recovers k-triangulations in type A_{n} and centrally symmetric k-triangulations in type B_{n}.

Following [6], define $\mathcal{S}_{c}(W, k)$ to be the set of subwords for w_{\circ} in the (non-reduced) word $\mathbf{c}^{k} \mathbf{w}_{\circ}(\mathbf{c})$, where c is a Coxeter element and $\mathbf{w}_{\circ}(\mathbf{c})$ is the c-sorting word for w_{\circ} (see the discussion before Definition 77. In crystallographic type, let $\mathcal{J}(W, k):=\mathcal{J}\left(\Phi^{+}(W) \times[k]\right)$ be the set of plane partitions of height k in the positive root poset $\Phi^{+}(W)$ (see Definition 15). In types H_{3} and $I_{2}(m)$, we use D. Armstrong's surrogate "root posets" [1].
Theorem 3 (6]32]) For $W=A_{n}, B_{n}, H_{3}$, or $I_{2}(m)$ and $k>0,\left|\mathcal{S}_{c}(W, k)\right|=|\mathcal{J}(W, k)|$.
For W a finite Coxeter group, let $\mathcal{R}(W)$ be the set of reduced words for the longest element w_{0}, and if W is additionally a Weyl group then let $\mathcal{L}(W)$ be the set of linear extensions of the positive root poset $\Phi^{+}(W)$. P. Edelman and C. Greene found a bijection between $\mathcal{R}(W)$ and $\mathcal{L}(W)$ in type A_{n}, and M. Haiman proved the corresponding result in type B_{n} (confirming a conjecture of R. Proctor) [7, 10]. In the noncrystallographic types H_{3} and $I_{2}(m)$, it was observed in [32] that linear extensions of D. Armstrong's "root posets" also satisfy a similar bijection with $\mathcal{R}(W)$.

Theorem 4 ([7, 10, 28, 32]) For $W=A_{n}, B_{n}, H_{3}$, or $I_{2}(m)$, there is a bijection between $\mathcal{R}(W)$ and $\mathcal{L}(W)$.

Ignoring redundancies like $D_{3} \cong A_{3}$, neither Theorem 4 nor Theorem 3 holds in other finite types (for this reason the types A_{n}, B_{n}, H_{3}, and $I_{2}(m)$ are called "coincidental" in [32]). Since A_{n}, B_{n}, H_{3}, and $I_{2}(m)$ each have a linear Coxeter diagram, we may permanently fix c to be a product of simple reflections from left to right in the diagram and write $\mathcal{S}(W, k):=\mathcal{S}_{c}(W, k)$.

In this language, we now explain the bijection of Theorem 1 to motivate our bijection in Theorem 2 , In type A_{n} and for $k=1$, A. Woo used an observation of 4] to induce P. Edelman and C. Greene's

[^0]bijective proof of Theorem 4 into a bijective proof of Theorem 3 [34]. L. Serrano and C. Stump subsequently extended A. Woo's construction to all k, explicitly connecting V. Pilaud and M. Pocchiola's pseudoline arrangements with E. Miller and A. Knutson's subword complex [13, 26]. This theorem may be summarized as saying that in type A_{n}, there is a "combinatorial lift" of Theorem 4 to Theorem 3 .

Surprisingly, the analogous procedure in the remaining types-types B_{n}, H_{3}, and $I_{2 m}$-does not quite work. In this paper, we propose a similar result in type B_{n}, proving a conjecture from [32]. Our bijection is most easily explained using the cube of Figure 2, which displays the relationships between reduced words \mathcal{R}, linear extensions \mathcal{L}, subwords \mathcal{S}, and plane partitions \mathcal{J} of both type B_{n} and for the parabolic quotient $A_{2 n-1}^{n}:=A_{2 n-1}^{\left\{s_{n}\right\}}$ (see Definition 11 for the definitions of $\mathcal{R}, \mathcal{L}, \mathcal{S}$, and \mathcal{J} for $A_{2 n-1}^{n}$).

Fig. 2: The bijections between $\mathcal{R}, \mathcal{L}, \mathcal{S}$, and \mathcal{J} for B_{n} and $A_{2 n-1}^{n}$.
In this cube, two vertices are connected by a solid line iff they are equinumerous. The dotted lines represent where a "combinatorial lift" may take place-for example, linear extensions are maximal chains of order ideals and reduced words are maximal chains in the weak order. Note that one can draw similar cubes in types A_{n}, H_{3}, and $I_{2}(m)$ [32].

Our bijection between centrally symmetric k-triangulations and plane partitions may be interpreted as

$$
\begin{equation*}
\mathfrak{K} \mathfrak{R}: \quad \mathcal{S}\left(B_{n}, k\right)-->\mathcal{R}\left(B_{n}\right) \longrightarrow_{\mathfrak{K}} \rightarrow \mathcal{L}\left(B_{n}\right)-\mathfrak{R}_{\mathcal{L}} \rightarrow \mathcal{L}\left(A_{2 n-1}^{n}\right)-->\mathcal{J}\left(A_{2 n-1}^{n}, k\right), \tag{2}
\end{equation*}
$$

which—as with L. Serrano and C. Stump's type A_{n} result [26]-is again a "combinatorial lift" of Theorem 4, but now combined with a necessary extra step to the parabolic quotient. Figure 2 suggests the second, more direct, path

$$
\begin{equation*}
\mathfrak{L C}: \quad \mathcal{S}\left(B_{n}, k\right)-\mathfrak{L}_{\mathcal{S}} \rightarrow \mathcal{S}\left(A_{2 n-1}^{n}, k\right)-\mathfrak{C}_{\mathcal{S}}^{\mathcal{J}} \rightarrow \mathcal{J}\left(A_{2 n-1}^{n}, k\right), \tag{3}
\end{equation*}
$$

which is based on the type B_{n} Little map. We prove Theorem 2 by showing that $\mathfrak{L C}$ is a bijection and also show that $\mathfrak{L C}=\mathfrak{K R}$.

It is clear that Theorem 1 is a bijective version of Theorem 3 in type A_{n}, but this is not immediately the case for Theorem 2 Indeed, although R. Proctor proved that $\left|\mathcal{J}\left(B_{n}, k\right)\right|=\left|\mathcal{J}\left(A_{2 n-1}^{n}, k\right)\right|$ by interpreting each side as a representation of Lie algebras and then equating them with a branching rule [23], we do not know of a bijection between plane partitions of height k in a trapezoid and in a square. Without such a correspondence, Theorem 2 fails to provide a bijection between $\mathcal{S}\left(B_{n}, k\right)$ and $\mathcal{J}\left(B_{n}, k\right)$.

The remainder of this abstract is structured as follows. In Section 2 we recall the correspondence between k-triangulations and centrally symmetric k-triangulations and certain subwords of types A and B. In Section 3, we give the bijections for fully commutative elements, explaining the outer square of Figure 2 In Section 4, we relate reduced words and linear extensions of types $A_{2 n-1}^{n}$ and B_{n}, explaining the top square of Figure 2 . In Section 5 , we recall Theorem 1 in greater detail. In Section 6, we state and prove our bijection between centrally symmetric k-triangulations and plane partitions in a box, establishing Theorem 2 Finally, in Section 7 , we discuss generalizations and future directions of research.

$2 k$-Triangulations and Subwords

In this section, we introduce k-triangulations and we recall the bijection between k-triangulations of an $(n+2 k+1)$-gon and $\mathcal{S}\left(A_{n}, k\right)$ and centrally symmetric k-triangulations of an $2(n+k)$-gon and $\mathcal{S}\left(B_{n}, k\right)$.
Definition 5 A k-triangulation T of a regular convex n-gon is a maximal set of diagonals of the n-gon such that no $k+1$ of them are mutually crossing. We write $\operatorname{Tri}_{A}(n, k)$ for the set of all such T. A centrally symmetric k-triangulation T of a $2 n$-gon is k-triangulation that is invariant under rotation of the $2 n$-gon by π radians. We write $\operatorname{Tri}_{B}(2 n, k)$ for the set of all such T.

The simplicial complex generated by all subsets of elements of $\operatorname{Tri}_{A}(n, k)$ generalizes the type A_{n} associahedron, which is obtained for $\operatorname{Tri}_{A}(n+3,1)$. In [12], J. Jonsson enumerated $\operatorname{Tri}_{A}(n, k)$. The centrally symmetric k-triangulations were introduced to generalize R. Simion's type B_{n} associahedron; $\left|\operatorname{Tri}_{B}(2 n, k)\right|$ was conjectured in [27] and proven non-bijectively in [25].

Theorem 6 ([12,25]) The number of k-triangulations and centrally symmetric k-triangulations are given by

$$
\left|\operatorname{Tri}_{A}(n+2 k+1, k)\right|=\prod_{1 \leq i \leq j \leq n} \frac{i+j+2 k}{i+j} \quad \text { and } \quad\left|\operatorname{Tri}_{B}(2(n+k), k)\right|=\prod_{h=1}^{k} \prod_{i=1}^{n} \prod_{j=1}^{n} \frac{h+i+j-1}{h+i+j-2}
$$

Our main theorem, Theorem 2, is therefore a bijective proof of this enumeration for $\operatorname{Tri}_{B}(2(n+k), k)$.
An edge is called k-relevant if it has at least k vertices on either side (not including its end points). The k-relevant edges are exactly those that could be involved in a $(k+1)$-crossing, so that every k-triangulation contains all non- k-relevant edges. A k-star is a set of edges of the form $\left\{v_{j} v_{j+k}: j \in \mathbb{Z}_{2 k+1}\right\}$, for some set of vertices $v_{0}, v_{1}, \ldots, v_{2 k}$ that are in order clockwise about the n-gon. By extending properties of triangles to k-stars, V. Pilaud and P. Santos defined an analogue of the Tamari lattice on k-triangulations [22]. Drawing on the structure given by the k-stars and a duality-which we do not explain here, although see the remark after Theorem 8-between k-stars and pseudolines, V. Pilaud and M. Pocchiola discovered an elegant bijection between multitriangulations and certain pseudoline arrangements [21]. It is most efficient for our purposes to describe these pseudoline arrangements using a restatement of this bijection due to C. Stump in type A_{n} and due to C. Ceballos, J. P. Labbé, and C. Stump for all finite Coxeter groups [6, 30].

Let (W, S) be a finite Coxeter system. A Coxeter element $c=s_{\pi_{1}} s_{\pi_{2}} \cdots s_{\pi_{n}}$ is a product of the simple reflections S in any order. Since we will only consider types A_{n}, B_{n}, H_{3}, and $I_{2}(m)$, we now permanently fix a reduced word \mathbf{c}-and hence a Coxeter element c-in each type to be the product from left to right of the following labelings of the Coxeter diagrams by simple reflections:

$$
\begin{array}{cccc}
A_{n} & B_{n} & H_{3} & I_{2}(m) \\
s_{1}-s_{2}-\cdots-s_{n-1}-s_{n} & s_{0}-4-s_{1}-\cdots-s_{n-2}-s_{n-1} & s_{1-5-s_{2}-s_{3}}^{s_{1}-m-s_{2}}
\end{array}
$$

For $w \in W$, a subword for w in a (possibly infinite) word $\mathbf{a}=a_{1} a_{2} a_{3} \cdots$ with $a_{i} \in S$ is a reduced word $a_{i_{1}} a_{i_{2}} \cdots a_{i_{\ell}}$ for w such that $i_{1}<i_{2}<\cdots i_{\ell}$. The c-sorting word $\mathbf{w}(\mathbf{c})$ of w is the lexicographically first (in position) reduced subword for w of the word \mathbf{c}^{∞} [24].

Definition 7 Given $w \in W$ and a possibly non-reduced word $\mathbf{a}=a_{1} \cdots a_{r}$ with $a_{i} \in S$, let $\mathcal{S}(\mathbf{a}, w)$ be the set of subwords for w in a. Define $\mathcal{S}(W, k):=\mathcal{S}\left(\mathbf{c}^{k} \mathbf{w}_{\circ}(\mathbf{c}), w_{\circ}\right)$.

Theorem 8 [6,21] There are bijections between $\mathcal{S}\left(A_{n}, k\right)$ and $\operatorname{Tri}_{A}(n+2 k+1, k)$, and between $\mathcal{S}\left(B_{n}, k\right)$ and $\operatorname{Tri}_{B}(2(n+k), k)$.

In type A_{n}, the bijection of Theorem 8 associates k-relevant edges with letters of $\mathbf{c}^{k} \mathbf{w}_{\circ}(\mathbf{c})$. In type B_{n}, the bijection associates k-relevant symmetric pairs of edges with letters. For example, see Figures 3 and 4 For more details, see the excellent examples in [6].

3 Correspondences for Fully Commutative Elements

This section briefly describes the square of Figure 2 containing the objects $\mathcal{R}\left(A_{2 n-1}^{n}\right), \mathcal{L}\left(A_{2 n-1}^{n}\right)$, $\mathcal{S}\left(A_{2 n-1}^{n}, k\right)$, and $\mathcal{J}\left(A_{2 n-1}^{n}, k\right)$.

Let (W, S) be a finite Coxeter system and for $w \in W$ let $\mathcal{R}(w)$ be the set of reduced words in the simple generators S for w. Any two reduced words $\mathbf{w}, \mathbf{w}^{\prime} \in \mathcal{R}(w)$ may be transformed to each other using only braid moves-that is, the graph on $\mathcal{R}(w)$ with edges given by braid moves is connected. We say that \mathbf{w} and \mathbf{w}^{\prime} lie in the same commutation class if one may be transformed into the other using only commutations.

Definition 9 An element $w \in W$ is fully commutative iff all reduced words for w lie in the same commutation class.

For w fully commutative, the interval in the weak order $[e, w]$ is a distributive lattice (and coincides with corresponding interval in the Bruhat order) [29]. To see this, we construct its poset of join-irreducibles.
Fix $w \in W$ and let $\mathbf{w}=w_{1} \cdots w_{\ell}$ be a reduced word for w, so that $w_{i} \in S$ and $\ell=\ell(w)$ is the length of w. Define a partial order $\prec_{\mathbf{w}}$ on $[\ell]$ by the transitive closure of the relations $i \prec_{\mathbf{w}} j$ if $i<j$ and $w_{i} w_{j} \neq w_{j} w_{i}$. This partial ordering defines a "root poset" $\Phi^{+}(\mathbf{w})$ on $[\ell]$ called a heap [29, 31]. We may label the elements of $\Phi^{+}(\mathbf{w})$ by replacing i by a_{i}. If $\mathbf{w}, \mathbf{w}^{\prime}$ are any two reduced words for a fully commutative element w, then it is not difficult to see that $\Phi^{+}(\mathbf{w})$ and $\Phi^{+}\left(\mathbf{w}^{\prime}\right)$ are isomorphic. We may therefore refer to the heap $\Phi^{+}(w)$ of a fully commutative $w \in W$.
Recall that a linear extension of a finite poset \mathcal{P} with ℓ elements is a bijection $\mathcal{L}: \mathcal{P} \rightarrow[\ell]$ such that if $p \prec_{\mathcal{P}} p^{\prime} \in \mathcal{P}$, then $\mathcal{L}(p)<\mathcal{L}\left(p^{\prime}\right)$. The weak order interval $[e, w]$ is now described by $\Phi^{+}(w)$.

Theorem 10 ([29]) For w fully commutative, there is a bijection between $\mathcal{L}\left(\Phi^{+}(w)\right)$ and $\mathcal{R}(w)$. This induces a bijection between $\mathcal{J}\left(\Phi^{+}(w)\right)$ and the elements in the interval $[e, w]$.

Proof: The first statement is clear from the definitions: a linear extension $\mathcal{L}: \Phi^{+}(w) \rightarrow[\ell]$ corresponds to the reduced word $\prod_{i=1}^{\ell} w_{\mathcal{L}^{-1}(i)}$. For the second statement, fix an order ideal I of $\Phi^{+}(w)$, choose any linear extension \mathcal{L} of $\Phi^{+}(w)$ with initial part in I-that is, such that $\mathcal{L}(j) \leq|I|$ for $j \in I$. The element in $[e, w]$ corresponding to I is then $\prod_{i=1}^{|I|} w_{\mathcal{L}^{-1}(i)}$.

We remark that Theorem 10 already gives us the flavor of a "combinatorial lift," since it uses the correspondence between $\mathcal{L}\left(\Phi^{+}(w)\right)$ and $\mathcal{R}(w)$ to induce a bijection between $\mathcal{J}\left(\Phi^{+}(w)\right)$ and $[e, w]$.

Let $J \subseteq S$ be a subset of the simple generators and let W_{J} be the corresponding parabolic subgroup of W generated by J. The parabolic quotient W^{J} is the set of minimal coset representatives for W / W_{J} [5]. For finite W, the parabolic quotient W^{J} has a longest element w_{\circ}^{J} and W^{J} is the interval $\left[e, w_{\circ}^{J}\right]$.
Definition 11 Let $w_{0}^{\left\{s_{n}\right\}}$ be the longest element of $A_{2 n-1}^{n}:=A_{2 n-1}^{\left\{s_{n}\right\}}$. We write $\mathcal{R}\left(A_{2 n-1}^{n}\right):=\mathcal{R}\left(w_{0}^{\left\{s_{n}\right\}}\right)$, $\mathcal{L}\left(A_{2 n-1}^{n}\right):=\mathcal{L}\left(\Phi^{+}\left(w_{\circ}^{\left\{s_{n}\right\}}\right)\right), \mathcal{S}\left(A_{2 n-1}^{n}, k\right):=\mathcal{S}\left(\mathbf{c}^{k+n}, w_{\circ}^{\left\{s_{n}\right\}}\right), \mathcal{J}\left(A_{2 n-1}^{n}, k\right):=\mathcal{J}\left(\Phi^{+}\left(w_{\circ}^{\left\{s_{n}\right\}}\right) \times[k]\right)$.

It is easy to check that $\Phi^{+}\left(w_{0}^{\left\{s_{n}\right\}}\right)$ is an $n \times n$ square-the inversions of $w_{0}^{\left\{s_{n}\right\}}$ are the order filter in the root poset $\Phi^{+}\left(A_{2 n-1}\right)$ generated by the simple root α_{n}. Since the element $w_{0}^{\left\{s_{n}\right\}}$ is fully commutative, Theorem 10 implies the following corollary [29].
Corollary 12 There is a bijection $\mathfrak{C}_{\mathcal{R}}^{\mathcal{L}}$ between $\mathcal{R}\left(A_{2 n-1}^{n}\right)$ and $\mathcal{L}\left(A_{2 n-1}^{n}\right)$.
We now explain the map between $\mathcal{S}\left(A_{2 n-1}^{n}, k\right)$ and $\mathcal{J}\left(A_{2 n-1}^{n}, k\right)$. Let $w \in W$ be a fully commutative element, and fix a reduced word $\mathbf{w}=w_{1} w_{2} \cdots w_{\ell}$ with $w_{i} \in S$. For such a \mathbf{w}, let $t_{\mathbf{w}, i}=$ $w_{1} \cdots w_{i-1} w_{i} w_{i-1} \cdots w_{1}$. Let $\mathbf{a}=a_{1} a_{2} \cdots a_{r}$ with $a_{i} \in S$ be a (possibly non-reduced) word in the simple reflections. For each letter w_{i} of \mathbf{w}, let

$$
\mathbf{a}(i):=\left\{j: j=i_{t} \text { for some } 1 \leq t \leq \ell \text { in some } \mathbf{w}^{\prime}=a_{i_{1}} \cdots a_{i_{\ell}} \in \mathcal{S}(\mathbf{a}, w) \text { such that } t_{\mathbf{w}, i}=t_{\mathbf{w}^{\prime}, j}\right\}
$$

be the set of letters of a corresponding to the letter w_{i} of \mathbf{w} in some subword of $\mathcal{S}(\mathbf{a}, w)$. Since w is fully commutative, the set $\{\mathbf{a}(i): 1 \leq i \leq \ell\}$ does not depend on the initial choice \mathbf{w}. Define the set of triples

$$
\Phi^{+}(\mathbf{a}, w):=\{(i, a, b): 1 \leq i \leq \ell, a<b \in \mathbf{a}(i) \text { with no } c \in \mathbf{a}(i) \text { for which } a<c<b\} .
$$

We now endow $\Phi^{+}(\mathbf{a}, w)$ with a partial order given by the transitive closure of the relations $(i, a, b) \succ_{\mathbf{a}}$ (i, b, c) and $(j, c, d) \succ_{\mathbf{a}}(i, a, b)$ if $i<j, w_{i}$ and w_{j} don't commute, and $a<c$. We call this partial ordering the subword heap for w with respect to \mathbf{a}, and denote it by $\Phi^{+}(\mathbf{a}, w)$ [32].
Theorem 13 ([32]) For $w \in W$ fully commutative, there is a bijection between $\mathcal{J}\left(\Phi^{+}(\mathbf{a}, w)\right)$ and $\mathcal{S}(\mathbf{a}, w)$.
Proof: An order ideal $I \in \mathcal{J}\left(\Phi^{+}(\mathbf{a}, w)\right)$ corresponds to the subword $a_{i_{1}} \cdots a_{i_{\ell}}$ of $\mathcal{S}(\mathbf{a}, w)$, where for $1 \leq j \leq \ell$, we set $i_{j}:=\min \left(\{a:(j, a, b) \in I\} \cup\left\{\max \left\{b:(j, a, b) \in \Phi^{+}(\mathbf{a}, w)\right\}\right\}\right)$.

Since $c=s_{1} s_{2} \cdots s_{2 n-1}, w_{\circ}^{\left\{s_{n}\right\}}$ is fully commutative, and $w_{\circ}^{\left\{s_{n}\right\}}$ has the explicit reduced word $\left(s_{n} \cdots s_{2 n-1}\right)\left(s_{n-1} \cdots s_{2 n-2}\right) \cdots\left(s_{1} \cdots s_{n}\right)$, Theorem 13 implies the following corollary.
Corollary 14 There is a bijection $\mathfrak{C}_{\mathcal{S}}^{\mathcal{J}}$ between $\mathcal{S}\left(A_{2 n-1}^{n}, k\right)$ and $\mathcal{J}\left(A_{2 n-1}^{n}, k\right)$.

4 Reduced Words, Linear Extensions, and Little Bumps

This section describes the square of Figure 2 containing $\mathcal{R}\left(B_{n}\right), \mathcal{L}\left(B_{n}\right), \mathcal{R}\left(A_{2 n-1}^{n}\right)$, and $\mathcal{L}\left(A_{2 n-1}^{n}\right)$.

4.1 Reduced Words and Linear Extensions

This section provides more detail on the highly nontrivial Theorem 4 . In particular, we describe the bijections between $\mathcal{R}\left(B_{n}\right)$ and $\mathcal{L}\left(B_{n}\right)$ and between $\mathcal{R}\left(A_{n}\right)$ and $\mathcal{L}\left(A_{n}\right)$.

When w is not fully commutative, $\mathcal{R}(w)$ becomes a connected graph only when we are allowed both commutations and the longer braid moves of W (see Theorem 3.3.1 in [5]). The theory of the previous section therefore cannot be applied to general reduced words. Remarkably, there is a poset that often behaves like a heap for the longest element w_{\circ} of W. Recall that a general Coxeter group has a correspondence between its reflections $T:=\left\{w s w^{-1}: s \in S\right\}$ and its positive roots [5].

Definition 15 The root poset $\Phi^{+}(W)$ is the partial order on the positive roots of W defined by $\alpha<\beta$ iff $\alpha-\beta$ is a nonnegative linear combination of positive roots.

This relationship between the root poset and the longest element is examined in more detail in [32, 33], where it is related to Catalan combinatorics (we note that Conjecture 4.4 of [33] is still open).

Theorem $4(7,10,14,32])$ When W is of type A_{n}, B_{n}, H_{3}, or $I_{2}(m)$, there is a bijection between $\mathcal{L}(W)$ and $\mathcal{R}(W)$. Under this bijection, the initial segments $\mathcal{L}^{-1}(\{1,2, \ldots, i\})$ of a linear extension \mathcal{L} and $\mathbf{w}_{\circ}=a_{1} a_{2} \cdots a_{i}$ of a reduced word \mathbf{w}_{\circ} determine each other (this may be interpreted as the existence of explicit insertion procedures that take reduced words to linear extensions).

Note that Theorem 4 does not continue to hold in other types-for example, $\left|\mathcal{L}\left(D_{4}\right)\right|=2400$, but $\left|\mathcal{R}\left(D_{4}\right)\right|=$ 2316. Kraśkiewicz insertion is the insertion procedure $\mathfrak{K}: \mathcal{R}\left(B_{n}\right) \rightarrow \mathcal{L}\left(B_{n}\right)$, due to W. Kraśkiewicz [14, 16].

In [10], M. Haiman introduced a bijection called rectification between $\mathcal{L}\left(A_{2 n-1}^{n}\right)$ and $\mathcal{L}\left(B_{n}\right)$. Given a square tableau, which we prefer to think of as an element of $\mathcal{L}\left(A_{2 n-1}^{n}\right)$, one performs jeu-de-taquin slides until arriving at a tableau of trapezoidal shape, which we see as an element of $\mathcal{L}\left(B_{n}\right)$.

Theorem 16 ([9]) There is a promotion-equivariant bijection $\mathfrak{R}_{\mathcal{L}}: \mathcal{L}\left(A_{2 n-1}^{n}\right) \rightarrow \mathcal{L}\left(B_{n}\right)$.

4.2 Little Bumps

D. Little introduced Little bumps in [19]. These are a bijective realization of algebraic identities on Stanley symmetric functions derived from Monk's rule for Schubert polynomials, particularly the transition equations introduced by A. Lascoux and M.-P. Schützenberger [17]. Little bumps act at the level of reduced words by successively incrementing or decrementing the simple reflections in the word until a new reduced word (of the same length) is obtained. T. Lam conjectured that two reduced words have the same Edelman-Greene recording tableau iff they differ by a sequence of Little bumps. Z. Hamaker and B. Young proved this conjecture in [11], and showed that Little bumps preserve the Q-tableau.

In [2], S. Billey demonstrated transition equations for type C Stanley symmetric functions. The type B Little bumps, introduced by S. Billey, Z. Hamaker, A. Roberts and B. Young in [3], are a bijective realization of these, and other, equations. As the following theorem shows, the type B Little bumps relate to Kraśkiewicz insertion in the same way that Little bumps relate to Edelman-Greene insertion.

Theorem 17 ([3]) Type B Little bumps preserve the Kraśkiewicz recording tableau Q^{\prime}, and two reduced words have the same Kraśkiewicz recording tableau iff they differ by a sequence of type B Little bumps.

We now recall type B Little bumps. Using the usual (signed) permutation realization of the Coxeter group B_{n}, reflections may be specified as pairs (i, j) such that $i \in[-n] \cup[n], j \in[n]$ and $|i| \leq j$.

For $w \in B_{n}$ let $s_{b_{1}} \cdots s_{b_{\ell}} \in \mathcal{R}(w)$ with corresponding word $\mathbf{b}=b_{1} \cdots b_{\ell}$ with $b_{i} \in\{0,1, \ldots, n-1\}$ we abuse notation by associating \mathbf{b} with $s_{b_{1}} \cdots s_{b_{\ell}}$. Let $w^{(m)}=s_{b_{1}} \cdots s_{b_{m}}$ with $w^{(0)}$ the identity. The wiring diagram of \mathbf{b} is the diagram on $\{0,1, \ldots, \ell\} \times \mathbb{Z} \backslash\{0\}$ where (i, j) is labeled by $\left(w^{(i)}\right)^{-1}(j)$ and entries with the same label are connected from left to right. The trajectory of i in \mathbf{b} is the sequence $\left\{\left(w^{(j)}\right)^{-1}(i)\right\}_{j=0}^{\ell}$, and corresponds to the entries of the wiring diagram labeled i.

A type B Little bump $\mathcal{B}_{(i, j)}^{\delta}$ on the reduced word \mathbf{b} is specified by a covered reflection $t_{(i, j)}$ of w-an inversion of w such that $\ell\left(w \cdot t_{(i, j)}\right)+1=\ell(w)$-and a direction $\delta \in\{ \pm 1\}$. Given (i, j), identify the index p in which the inversion (i, j) is introduced in \mathbf{b}. Set $\mathbf{a}=\mathcal{P}_{\delta^{\prime}}(\mathbf{b}, p)$, where the push $\mathcal{P}_{\delta^{\prime}}$ fixes b_{j} for $j \neq p$ and adds δ^{\prime} to b_{p}. Here $\delta^{\prime}=\delta$ if $\left\{w^{(p-1)}\left(b_{p}\right), w^{(p-1)}\left(b_{p}+1\right)\right\} \cap\{i, j\} \neq \varnothing$ and $\delta^{\prime}=-\delta$ otherwise. This condition ensures that the intersection of the trajectories of i and j in the wiring diagram is moved in the direction δ. Here, a may not be reduced, in which case there is a unique index $p^{\prime} \neq p$ such that the word $s_{a_{1}} \ldots \widehat{s_{a_{p^{\prime}}}} \ldots s_{a_{\ell}}$ is reduced (this follows from the assumption that $t_{(i, j)}$ was a covered reflection and Lemma 21 of [15]). Then $a_{p^{\prime}}$ and a_{p} interchange the same values-up to sign-and we set $a_{p^{\prime}}:=\mathcal{P}_{\delta^{\prime}}\left(a, p^{\prime}\right)$, iterating until we obtain a word a that is reduced. This algorithm is guaranteed to finish in finite time by [3, Lemma 3.5], and we set $\mathcal{B}_{(i, j)}^{\delta}(\mathbf{b})=\mathbf{a}$.

As observed in Section 4.1, for $\mathbf{a} \in \mathcal{R}\left(A_{2 n-1}^{n}\right)$, the mixed insertion recording tableau $\mathfrak{L}_{\mathcal{R}}(\mathbf{a})$ is in $\mathcal{L}\left(B_{n}\right)$, and coincides with its Kraśkiewicz recording tableau. Similarly, for $\mathbf{b} \in \mathcal{R}\left(B_{n}\right)$, Theorem 4 implies that its Kraśkiewicz recording tableau also gives $\mathrm{Q}^{\prime}(\mathbf{b}) \in \mathcal{L}\left(B_{n}\right)$. Since these insertions are invertible, we obtain a bijection

$$
\mathfrak{L}_{\mathcal{R}}: \mathcal{R}\left(A_{2 n-1}^{n}\right) \rightarrow \mathcal{R}\left(B_{n}\right) \text { by setting } \mathfrak{L}_{\mathcal{R}}(\mathbf{a})=\mathbf{b} \text { when } \mathrm{Q}^{\prime}(\mathbf{a})=\mathrm{Q}^{\prime}(\mathbf{b})
$$

Theorem 17 tells us that the two reduced words \mathbf{a} and \mathbf{b} must be connected by a sequence of Little bumps. We now use the type B Little bumps to explicitly construct the bijection $\mathfrak{L}_{\mathcal{R}}{ }^{-1}: \mathcal{R}\left(B_{n}\right) \rightarrow \mathcal{R}\left(A_{2 n-1}^{n}\right)$.
Proposition 18 Define the sequences $J_{k}:=(-1,1),(1,2), \ldots,(k-1, k)$ with $J_{1}:=(-1,1)$, and let J be the concatenation $J:=J_{n}, J_{n-1}, \ldots, J_{1}$.

$$
\text { Then for } \mathbf{b} \in \mathcal{R}\left(B_{n}\right), \quad\left(\prod_{(i, j) \in J} \mathcal{B}_{(i, j)}^{+1}\right) \mathbf{b}=\mathbf{a}, \quad \text { where } \mathbf{a} \in \mathcal{R}\left(A_{2 n-1}^{n}\right) \text { and } \mathfrak{L}_{\mathcal{R}}(\mathbf{a})=\mathbf{b} \text {. }
$$

Using techniques from [3], this proposition can be reduced to showing the map works as described for a single element of $\mathcal{R}\left(B_{n}\right)$, which can then be readily verified for the word \mathbf{c}^{n}. For example,

$$
\mathcal{R}\left(B_{2}\right) \ni 0101 \xrightarrow{\mathcal{B}_{(-1,1)}^{+1}} 1201 \xrightarrow{\mathcal{B}_{(1,2)}^{+1}}>2301 \xrightarrow{\mathcal{B}_{(-1,1)}^{+1}} 2312 \in \mathcal{R}\left(A_{3}^{2}\right)
$$

This Little map characterization provides more precise control over the relationship between a \in $\mathcal{R}\left(A_{2 n-1}^{n}\right)$ and $\mathfrak{L}_{\mathcal{R}}(\mathbf{a}) \in \mathcal{R}\left(B_{n}\right)$. Recall that the peak set of a word $\mathbf{a}=a_{1} \cdots a_{r}$ is the set $\operatorname{Peak}(\mathbf{a}):=$ $\left\{i: a_{i-1}<a_{i}>a_{i+1}\right\}$, while its descent set is $\operatorname{Des}(\mathbf{a}):=\left\{i: a_{i}>a_{i+1}\right\}$. T-K. Lam showed that while \mathbf{a} and $\mathrm{Q}^{\prime}(\mathbf{a})$ have the same peak set, in general they need not have the same descent set [16].

Fig. 3: From left to right, we have $\operatorname{Tri}_{A}(5,1), \mathcal{S}\left(A_{2}, 1\right)$, and $\mathcal{J}\left(A_{n}, 1\right)$. The graph structure is given by flips. With the proper orientation, the graph at the left recovers the Tamari lattice on Dyck paths.

Lemma 19 Let $\mathbf{a} \in \mathcal{R}\left(A_{2 n-1}^{n}\right)$. Then $\operatorname{Des}(\mathbf{a})=\operatorname{Des}\left(\mathfrak{I}_{\mathcal{R}}(\mathbf{a})\right)$.
Proof: As observed in the proof of [3, Lemma 3.6], the only way the descent set can change is when the letter corresponding to the 1 in a consecutive 01 or 10 pattern is pushed to become a 0 . The boundary of the $\left(w_{j}, w_{i}\right)$-crossing introduced by the m th inversion in the word a is the union of the trajectory of i from 0 to m and the trajectory of j from m to ℓ. The boundary of $\left(w_{i}, w_{j}\right)$ provides a lower bound for the possible locations of inversions in the Little bump $\mathcal{B}_{(i, j)}^{+1}$ (see e.g. [3] Lemma 3.5]). Observe that the boundary of any bump $(i, i+1)$ is bounded below by the trajectory of i, which is in the upper half of the corresponding wiring diagram. The value 1 can only be decremented when the boundary is in the lower half of the wiring diagram. Since this never occurs, the descent set does not change under $\mathfrak{L}_{\mathcal{R}}$.

5 Subwords and Plane Partitions in Type A

We use the background of the previous sections to summarize Theorem 1 The core of L. Serrano and C. Stump's paper [26] is a bijective proof of an observation of S. Fomin and A. Kirillov [8], generalizing work of A. Woo [34]. See also [4, 18].
Theorem 1 ([26,34]) There is an explicit bijection between $\operatorname{Tri}_{A}(n+2 k+1, k)$ and $\mathcal{J}\left(A_{n}, k\right)$.
This bijection proceeds as follows. Let $N:=\frac{n \cdot(n+1)}{2}=\ell\left(w_{\circ}\right), \mathbf{a}=a_{1} a_{2} \cdots a_{k \cdot n+N}:=\mathbf{c}^{k} \mathbf{w}_{\circ}(\mathbf{c})$, and let $\operatorname{des}_{\mathbf{a}}(i)$ be the number of descents in the word $a_{1} a_{2} \cdots a_{i}$. First, $\operatorname{Tri}_{A}(n+2 k+1, k)$ is encoded as $\mathcal{S}\left(A_{n}, k\right)$ using Theorem 8 . Next, using Theorem 4, we apply Edelman-Greene insertion to a subword $a_{i_{1}} a_{i_{2}} \cdots a_{i_{N}}$ of $\mathcal{S}\left(A_{n}, k\right)$ to produce a linear extension in $\mathcal{L}\left(A_{n}\right)$. We modify this linear extension by replacing the letter j by $\operatorname{des}_{\mathbf{a}}\left(i_{j}\right)+1$, and-thinking of $\Phi^{+}\left(A_{n}\right)$ as a tableau of staircase shape-subtract r from the r th row to obtain a plane partition of height at most k of staircase shape.

The construction above may be summarized as the "combinatorial lift" of Equation 1 .
Remark 20 A recent result of J. Morse and A. Schilling may be phrased to state that for $\mathbf{c}=s_{1} s_{2} \cdots s_{n}$ the fixed Coxeter element of type A_{n} and $w \in A_{n}$, the subwords $\mathcal{S}\left(\mathbf{c}^{k}, w\right)$ may be given a crystal
graph structure of type A_{k-1} [20]. For example, in type A_{n} with fundamental weights $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, $\mathcal{S}\left(\mathbf{c}^{n+1}, w_{\circ}\right)$ has a structure isomorphic to the crystal $A_{n}\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}\right)$.

To connect these two stories, note that the subwords $\mathcal{S}\left(\mathbf{c}^{k} \mathbf{w}_{\circ}(\mathbf{c}), w_{\circ}\right)$ in type A_{n} are naturally a subset of the subwords $\mathcal{S}\left(\mathbf{c}^{n+k}, w_{\circ}\right)$. The bijection that J. Morse and A. Schilling provide between $\mathcal{S}\left(\mathbf{c}^{n+k}, w_{\circ}\right)$ and semistandard Young tableaux specializes to the bijection of Theorem 1 when restricted to this subset.

This crystal interpretation gives a second way (different from the theory of brick polytopes) to provide geometric embeddings of certain subword complexes.

6 Subwords and Plane Partitions for Type B_{n}

Rather than proceed as in Theorem 1, we follow the more direct path of Equation 3 to prove Theorem 2.
Theorem 2 There is an explicit bijection between $\operatorname{Tri}_{B}(2(n+k), k)$ and $\mathcal{J}\left(A_{2 n-1}^{n}, k\right)$.
To define the lifting of the map $\mathfrak{L}_{\mathcal{R}}: \mathcal{R}\left(A_{2 n-1}^{n}\right) \rightarrow \mathcal{R}\left(B_{n}\right)$ to a map $\mathfrak{L}_{\mathcal{S}}: \mathcal{S}\left(A_{2 n-1}^{n}, k\right) \rightarrow \mathcal{S}\left(B_{n}, k\right)$, we will find it helpful to refer to a subword of $\mathcal{S}\left(A_{2 n-1}^{n}, k\right)=\mathcal{S}\left(\left(s_{1} s_{2} \cdots s_{2 n-1}\right)^{n+k}, w_{0}^{\left\{s_{n}\right\}}\right)$ by

$$
\mathbf{a}^{\mathbf{i}}=a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots a_{n^{2}}^{i_{n^{2}}}
$$

where $i_{j} \in[n+k]$ records from which copy of $\left(s_{1} s_{2} \cdots s_{2 n-1}\right)$ the simple reflection $a_{i} \in\left\{s_{1}, s_{2}, \cdots, s_{2 n-1}\right\}$ was taken. We use the same notation for subwords of $\mathcal{S}\left(B_{n}, k\right)=\mathcal{S}\left(\left(s_{0} s_{1} \cdots s_{n-1}\right)^{n+k}, w_{\circ}\right)$-a subword is written $\mathbf{b}^{\mathbf{i}}=b_{1}^{i_{1}} b_{2}^{i_{2}} \cdots b_{n^{2}}^{i^{2}}$, where $i_{j} \in[n+k]$ records from which copy of $\left(s_{0} s_{1} \cdots s_{n-1}\right)$ the simple reflection $b_{i} \in\left\{s_{0}, s_{1}, \cdots, s_{n-1}\right\}$ was taken.
Proposition 21 Then the map $\mathfrak{L}_{\mathcal{S}}: \mathcal{S}\left(A_{2 n-1}^{n}, k\right) \rightarrow \mathcal{S}\left(B_{n}, k\right)$, defined by

$$
\mathfrak{L}_{\mathcal{S}}\left(a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots a_{n^{2}}^{i_{n}{ }^{2}}\right)=b_{1}^{i_{1}} b_{2}^{i_{2}} \ldots b_{n^{2}}^{i_{n}{ }^{2}}
$$

where $\mathfrak{L}_{\mathcal{R}}\left(a_{1} a_{2} \cdots a_{n^{2}}\right)=b_{1} b_{2} \cdots b_{n^{2}}$, is a bijection.
Proof: This follows from Lemma 19-the descent sets of $a_{1} a_{2} \cdots a_{n^{2}}$ and $b_{1} b_{2} \cdots b_{n^{2}}$ agree, so that increasing sequences in one are taken to increasing sequences in the other. Since the number of copies of c are the same in $\mathcal{S}\left(A_{2 n-1}^{n}, k\right)$ and $\mathcal{S}\left(B_{n}, k\right)$, the map is well-defined.

The proof of Theorem 2 now follows from Corollary 14 and Proposition 21 We now phrase this bijection similarly to the bijection given in Section5 Let $N:=n^{2}=\ell\left(w_{\circ}\right)$ and $\mathbf{a}=a_{1} a_{2} \cdots a_{k \cdot n+N}:=$ \mathbf{c}^{k+n}. First, $\operatorname{Tri}_{B}(2(n+k), k)$ is encoded as $\mathcal{S}\left(B_{n}, k\right)$ using Theorem 8 . Next, using Theorem 4 we apply Kraśkiewicz insertion \mathfrak{K} to a subword $a_{i_{1}} a_{i_{2}} \cdots a_{i_{N}}$ of $\mathcal{S}\left(B_{n}, k\right)$ to produce a linear extension in $\mathcal{L}\left(B_{n}\right)$. At this point, rather than modify the linear extension of $\mathcal{L}\left(B_{n}\right)$, we next apply rectification $\Re_{\mathcal{L}}$ to produce a linear extension in $\mathcal{L}\left(A_{2 n-1}^{n}\right)$, and only then do we modify the linear extension of $\mathcal{L}\left(A_{2 n-1}^{n}\right)$ by replacing the letter j by $\operatorname{des}_{\mathbf{a}}\left(i_{j}\right)+1$. Thinking of $\Phi^{+}\left(A_{2 n}^{n}\right)$ as a tableau of square shape, we subtract r from the r th row to obtain a plane partition of height at most k of square shape.

As in type A_{n}, the construction above may be summarized as the "combinatorial lift" of Theorem 4 to Theorem 3 given in Equation 2 We can prove that $\mathfrak{K} \mathfrak{R}=\mathfrak{L C}$ using the maps discussed in Section 4.1 .
Remark 22 The verbatim analogue of the map in type A_{n} given in Equation 1 does not work as before. Although we may lift a subword to a linear extension and then modify the linear extension of $\mathcal{L}\left(B_{n}\right)$ by replacing the letter j by $\operatorname{des}_{\mathbf{a}}\left(i_{j}\right)+1$, we do not have a bijection from the resulting tableaux to $\mathcal{J}\left(B_{n}, k\right)$.

Fig. 4: From left to right, we have $\operatorname{Tri}_{B}(6,1), \mathcal{S}\left(B_{2}, 1\right)$, and $\mathcal{J}\left(A_{2 n-1}^{n}, 1\right)$. The graph structure is given by flips.

7 Extensions

We close with some extensions and future directions. First, Proposition 21 can be adapted to give a bijection between $\mathcal{S}\left(\left(s_{0} s_{1} \cdots s_{n-1}\right)^{m+k},\left(s_{0} s_{1} \cdots s_{n-1}\right)^{m}\right)$ in type B_{n} and $\mathcal{S}\left(\left(s_{1} \cdots s_{m+n-1}\right)^{m+k}, w_{0}^{\left\{s_{m}\right\}}\right)$ in type A_{m+n-1}, from which we can then easily pass to plane partitions in an $n \times m \times k$ box. Second, using the natural flip structure on $\mathcal{S}\left(B_{n}, k\right)$ and our main theorem, we obtain a poset structure on plane partitions. It would be interesting to describe the flips directly on the plane partitions-this is open (and accessible) even for $k=1$ (see also Figure 3 for a remark about this in type A, where the Tamari lattice on Dyck paths is recovered). Third, we do not have a good understanding of why the exact analogue of L. Serrano and C. Stump's type A_{n} bijection does not work in type B_{n}. Fourth, one can draw similar cubes to the one in Figure 2 in type A_{n}, H_{3}, and $I_{2}(m)$-it would be interesting to provide analogues of all the edges of Figure 2 in those types. Fifth, the most obvious open problem is to complete either of the two edges in Figure 2 marked "No known bijection" (note that for $k=1$ we know of several bijections and that some work has been done for $k=2$). One approach towards this would be to extend the crystal structure of J. Morse and A. Schilling to subword complexes of other types as a first step towards a bijectivization of R. Proctor's proof that $\left|\mathcal{J}\left(B_{n}, k\right)\right|=\left|\mathcal{J}\left(A_{2 n-1}^{n}, k\right)\right|$.

8 Acknowledgments

The second author would like to thank Luis Serrano for helpful conversations and Phillipe Nadeau for comments on an early version of the abstract.

References

[1] D. Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, American Mathematical Society, 2009.
[2] S. Billey, Transition equations for isotropic flag manifolds, Discrete Math. 193 (1998), no. 1, 69-84.
[3] S. Billey, Z. Hamaker, A. Roberts, and B. Young, Coxeter-Knuth graphs and a signed Little map for type B reduced words, arXiv preprint arXiv:1405.4891 (2014).
[4] S. Billey, W. Jockusch, and R. Stanley, Some combinatorial properties of Schubert polynomials, J. of Alg. Comb. 2 (1993), no. 4, 345-374.
[5] A. Björner and F. Brenti, Combinatorics of Coxeter groups, Vol. 231, Springer, 2005.
[6] C. Ceballos, J.-P. Labbé, and C. Stump, Subword complexes, cluster complexes, and generalized multi-associahedra, J. of Alg. Comb. (2011), 1-35.
[7] P. Edelman and C. Greene, Balanced tableaux, Advances in Math. 63 (1987), no. 1, 42-99.
[8] S. Fomin and A. Kirillov, Reduced words and plane partitions, J. of Alg. Combin. 6 (1997), no. 4, 311-319.
[9] M. Haiman, On mixed insertion, symmetry, and shifted Young tableaux, J. of Combin. Theory, Series A 50 (1989), no. 2, 196-225.
[10] M. Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math. 99 (1992), no. 1, 79-113.
[11] Z. Hamaker and B. Young, Relating Edelman-Greene insertion to the Little map, J. of Alg. Combin. 40 (2014), no. 3, 693-710.
[12] J. Jonsson, Generalized triangulations and diagonal-free subsets of stack polyominoes, J. of Combin. Theory, Series A 112 (2005), no. 1, 117-142.
[13] A. Knutson and E. Miller, Subword complexes in Coxeter groups, Advances in Mathematics 184 (2004), no. 1, 161-176.
[14] W. Kraśkiewicz, Reduced decompositions in hyperoctahedral groups, Comptes rendus de l'Académie des sciences. Série 1, Mathématique 309 (1989), no. 16, 903-907.
[15] T. Lam and Mark S., A Little bijection for affine Stanley symmetric functions, Sém. Lotharingien de Comb. 54 (2006), B54Ai.
[16] T.-K. Lam, B_{n} Stanley symmetric functions, Discrete Math. 157 (1996), no. 1, 241-270.
[17] A. Lascoux and M-P. Schützenberger, Schubert polynomials and the Littlewood-Richardson rule, Letters in Mathematical Physics 10 (1985), no. 2-3, 111-124.
[18] C. Lenart, A unified approach to combinatorial formulas for Schubert polynomials, J. of Alg. Combin. 20 (2004), no. 3, 263299.
[19] D. Little, Combinatorial aspects of the Lascoux-Schützenberger tree, Advances in Math. 174 (2003), no. 2, 236-253.
[20] J. Morse and A. Schilling, Crystal operators and flag Gromov-Witten invariants, preprint (2014).
[21] V. Pilaud and M. Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks, Discrete \& Computational Geometry 48 (2012), no. 1, 142-191.
[22] V. Pilaud and F. Santos, Multitriangulations as complexes of star polygons, Discrete \& Computational Geometry 41 (2009), no. 2, 284-317.
[23] R. Proctor, Shifted plane partitions of trapezoidal shape, Proc. of the American Math. Society 89 (1983), no. 3, 553-559.
[24] N. Reading, Sortable elements and Cambrian lattices, Algebra Universalis 56 (2007), no. 3-4, 411-437.
[25] M. Rubey and C. Stump, Crossings and nestings in set partitions of classical types, Electron. J. Combin 17 (2010).
[26] L. Serrano and C. Stump, Generalized triangulations, pipe dreams, and simplicial spheres, Electron. J. Combin. 19 (2012).
[27] D. Soll and V. Welker, Type-B generalized triangulations and determinantal ideals, Dis. Math. 309 (2009), no. 9, 2782-2797.
[28] R. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin 5 (1984), no. 4, 359-372.
[29] J. Stembridge, On the fully commutative elements of Coxeter groups, J. of Alg. Combin. 5 (1996), no. 4, 353-385.
[30] C. Stump, A new perspective on k-triangulations, J. of Combin. Theory, Series A 118 (2011), no. 6, 1794-1800.
[31] G. Viennot, Heaps of pieces, I: Basic definitions and combinatorial lemmas, Combinatoire énumérative, 1986, pp. 321-350.
[32] N. Williams, Cataland, Dissertation, University of Minnesota, 2013.
[33] N. Williams, Bijactions in Cataland, DMTCS Proceedings 01 (2014), 597-608.
[34] A. Woo, Catalan numbers and Schubert polynomials for $w=1(n+1) \ldots 2$, arXiv preprint math (2004).

[^0]: ${ }^{\dagger}$ Email: zachary.hamaker@gmail.com. Z.H. is supported by the Institute for Mathematics and its Applications with funds provided by the National Science Foundation.
 ${ }^{\ddagger}$ Email: nathan.f.williams@gmail.com. N.W. is supported by a postdoctoral position at LaCIM.

