
FPSAC 2015, Daejeon, South Korea DMTCS proc. FPSAC’15, 2015, 253–260

Kraśkiewicz-Pragacz modules and some
positivity properties of Schubert polynomials

Masaki Watanabe1†

1Graduate School of Mathematics, the University of Tokyo

Abstract. We use the modules introduced by Kraśkiewicz and Pragacz (1987, 2004) to show some positivity proper-
ties of Schubert polynomials. We give a new proof to the classical fact that the product of two Schubert polynomials
is Schubert-positive, and also show a new result that the plethystic composition of a Schur function with a Schubert
polynomial is Schubert-positive. The present submission is an extended abstract on these results and the full version
of this work will be published elsewhere.

Résumé. Nous employons les modules introduits par Kraśkiewicz et Pragacz (1987, 2004) et démontrons certaines
propriétés de positivité des polynômes de Schubert: nous donnons une nouvelle preuve pour le fait classique que
le produit de deux polynômes de Schubert est Schubert-positif; nous d’emontrons aussi un nouveau résultat que la
composition plethystique d’une fonction de Schur avec un polynôme de Schubert est Schubert-positif. Cet article est
un sommaire de ces résultats, et une version pleine de ce travail sera publée ailleurs.
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1 Introduction
The study of Schubert polynomials is an important and interesting subject in algebraic combinatorics.
One of the possible methods for studying Schubert polynomials is through the modules introduced by
Kraśkiewicz and Pragacz ([KP87], [KP04]). Let b be the Lie algebra of all upper triangular matrices. For
each permutation w, Kraśkiewicz and Pragacz defined a representation Sw of b such that its character
with respect to the subalgebra h of all diagonal matrices is equal to the Schubert polynomial Sw.

In [Wat14a], the author investigated characterizations of b-modules having a filtration whose subquo-
tients are Kraśkiewicz-Pragacz modules (or KP filtration for short). The main motivation for this study is
the investigation of positivity properties of Schubert polynomials. For example, it is a classical fact, usu-
ally proved using the cohomology ring of flag variety, that the product SwSv of two Schubert polynomials
is a positive sum of Schubert polynomials. If we show that the tensor product Sw ⊗ Sv of KP modules
has a KP filtration, then it gives another proof to this fact. Another example is the question of positivity
for the plethystic composition of a Schur function with a Schubert polynomial: if Sw = xα + xβ + · · ·
and sλ is a Schur function, is sλ(xα, xβ , . . .) a positive sum of Schubert polynomials? A positive answer
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to this question, a natural generalization of the Schur-positivity of the plethysm of two Schur functions,
follows if we show the Schur-functor image sλ(Sw) of a KP module has a KP filtration. In [Wat14b] we
gave positive answers to both of these questions.

This extended abstract is a summary of the author’s two papers [Wat14a] and [Wat14b]: the detailed
arguments are given in these two papers and either omitted or only outlined here. The following sections
are organized as follows. In Sections 2 and 3 we prepare some basic notations, and introduce the notion
of Kraśkiewicz-Pragacz modules. In Section 4 we present some results from [Wat14a] giving a charac-
terization of modules having a filtration by KP modules. In Section 5 we show some applications of our
characterization: we present the result that the tensor product of KP modules has a KP filtration, and show
that the plethystic composition of a Schur function with a Schubert polynomial is Schubert-positive.

2 Preliminaries
Let N be the set of all positive integers and let Z≥0 be the set of all nonnegative integers. A permutation
w is a bijection from N to itself which fixes all but finitely many points. Let S∞ denote the group
of all permutations. Let n be a positive integer. Let Sn = {w ∈ S∞ : w(i) = i (i > n)} and
S
(n)
∞ = {w ∈ S∞ : w(n + 1) < w(n + 2) < · · · }. Sometimes a permutation will be written in

one-line form: i.e. if w ∈ Sn, we may write [w(1)w(2) · · · w(n)] to mean w. For i < j, let tij
denote the permutation which exchanges i and j and fixes all other points. Let si = ti,i+1. For a
permutation w, let `(w) = #{i < j : w(i) > w(j)}. Let w0 ∈ Sn be the longest element of Sn, i.e.
w0(i) = n+ 1− i (1 ≤ i ≤ n). For w ∈ S(n)

∞ we define code(w) = (code(w)1, . . . , code(w)n) ∈ Zn≥0
by code(w)i = #{j : i < j, w(i) > w(j)}. We define the Rothe diagram D(w) of a permutation w as
D(w) = {(i, w(j)) : i < j, w(i) > w(j)}.
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Figure 1: Rothe diagram of w = [25143] (corresponding to the positions of the black dots above) is

D(w) = {(1, 1), (2, 1), (2, 3), (2, 4), (4, 3)} (shown by the boxes above).

For a polynomial f = f(x1, . . . , xn) and 1 ≤ i ≤ n − 1, we define ∂if = f−sif
xi−xi+1

. For w ∈ S
(n)
∞ we

can assign its Schubert polynomial Sw ∈ Z[x1, . . . , xn], which is recursively defined by

• Sw = x
w(1)−1
1 x

w(2)−1
2 · · · xw(n)−1

n if w(1) > w(2) > · · · > w(n), and

• Swsi = ∂iSw if ℓ(wsi) < ℓ(w).

It is known that the set {Sw : w ∈ S
(n)
∞ } constitutes a Z-base for Z[x1, . . . , xn] ([Mac91, (4.13)]).

Let K be a field of characteristic zero. Let b = bn be the Lie algebra of all upper triangular K-
matrices. and let h ⊂ b and n+ ⊂ b be the subalgebra of all diagonal matrices and the subalgebra of all
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For a polynomial f = f(x1, . . . , xn) and 1 ≤ i ≤ n− 1, we define ∂if = f−sif
xi−xi+1

. For w ∈ S(n)
∞ we

can assign its Schubert polynomial Sw ∈ Z[x1, . . . , xn], which is recursively defined by

• Sw = x
w(1)−1
1 x

w(2)−1
2 · · ·xw(n)−1

n if w(1) > w(2) > · · · > w(n), and

• Swsi = ∂iSw if `(wsi) < `(w).

It is known that the set {Sw : w ∈ S(n)
∞ } constitutes a Z-base for Z[x1, . . . , xn] ([Mac91, (4.13)]).

Let K be a field of characteristic zero. Let b = bn be the Lie algebra of all upper triangular K-
matrices. and let h ⊂ b and n+ ⊂ b be the subalgebra of all diagonal matrices and the subalgebra of all
strictly upper triangular matrices respectively. Let U(b) and U(n+) be the universal enveloping algebras
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of b and n+ respectively. For a U(b)-module M and λ = (λ1, . . . , λn) ∈ Zn, let Mλ = {m ∈ M :
hm = 〈λ, h〉m (∀h ∈ h)} where 〈λ, h〉 = ∑

λihi. If Mλ 6= 0 then λ is said to be a weight of M . If
M =

⊕
λ∈Zn Mλ and each Mλ has a finite dimension, then M is said to be a weight b-module and we

define ch(M) =
∑
λ dimMλx

λ where xλ = xλ1
1 · · ·xλn

n . From here we only consider weight b-modules,
and write Exti to mean Ext functors in the category of all weight b-modules. For 1 ≤ i < j ≤ n, let
eij ∈ b be the matrix with 1 at the (i, j)-position and all other coordinates 0. For λ ∈ Zn, let Kλ

denote the one-dimensional U(b)-module where h ∈ h acts by 〈λ, h〉 and eij acts by 0. We define
ρ = (n − 1, n − 2, . . . , 0) ∈ Zn, 1 = (1, . . . , 1) ∈ Zn and εj = (0, . . . , 1, . . . , 0) ∈ Zn (1 at j-th
position).

3 Kraśkiewicz-Pragacz modules
In [KP87], Kraśkiewicz and Pragacz defined certain U(b)-modules which we call here Kraśkiewicz-
Pragacz modules or KP modules. Here we use the following definition. Let w ∈ S

(n)
∞ . Let Kn =⊕

1≤i≤nKui be the vector representation of b. For each p ∈ N, let {i : (i, p) ∈ D(w)} = {i1, . . . , ilp}
(i1 < · · · < ilp ), and let u(p)w = ui1 ∧ · · · ∧ uilp . Let uw = u

(1)
w ⊗ u(2)w ⊗ · · · ∈

∧l1 Kn ⊗∧l2 Kn ⊗ · · · .
Then the KP module Sw associated to w is defined as Sw = U(b)uw. This module satisfies the following:

Theorem 3.1 ([KP04, Remark 1.6 and Theorem 4.1]) Sw is a weight module and ch(Sw) = Sw.

Example 3.2 If w = si, then D(si) = {(i, i)}, usi = ui and Ssi =
⊕

1≤j≤iKuj =: Ki. So ch(Ssi) =
x1 + · · ·+ xi = Ssi .

Example 3.3 More generally, if w ∈ S
(n)
∞ is a Grassmannian permutation with descent at i-th posi-

tion, i.e. w(1) < · · · < w(i) and w(i + 1) < w(i + 2) < · · · , then the corresponding Rothe
diagram is, after a rearrangement of the columns, a Young diagram in French notation (see Figure
2). In this case uw is a lowest-weight vector in a irreducible representation of gli with lowest weight
code(w), and thus Sw is isomorphic to this module (seen as a module over bn through the morphism

bn 3 epq 7→
{
epq (q ≤ i)
0 (q > i)

∈ bi ↪→ gli). This corresponds to the fact that Schubert polynomials

indexed by permutations are just the Schur polynomials.

Example 3.4 If w is 2143-avoiding, then it is known ([Mac91, (1.27)]) that the rows of D(w) are totally
(pre)ordered by inclusion. Thus in this case uw is an extremal weight vector in a certain irreducible
representation of gln, and thus Sw is isomorphic to a Demazure module: i.e. the U(b)-module generated
by an extremal weight vector in a irreducible representation of gln. Note that this corresponds to the result
of Lascoux and Schutzenberger ([LS89, Theorem 5], [Las03, Corollary 10.5.2]) that Schubert polynomials
with 2143-avoiding indices are equal to certain key polynomials.

On the other hand, consider w = [2143]. Then D(w) = {(1, 1), (3, 3)}, uw = u1 ⊗ u3, Sw =⊕
1≤i≤3K(u1 ⊗ ui) = K1 ⊗ K3 and ch(Sw) = x1(x1 + x2 + x3) = Sw. In this case Sw is not

isomorphic to the Demazure module of the same lowest weight (i). In general, Sw is isomorphic to the

(i) The KP module S[2143] in this example is, if not seen as a U(b)-module but as a U(n+)-module, isomorphic to a Demazure
module (say V (0, 0, 1)), and thus results such as Theorem 4.3 for this kind of KP modules follow from known results on Demazure
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Demazure module V (code(w)) of lowest weight code(w) if and only if w is 2143-avoiding. For a general
w, there always exists a surjection from Sw to V (code(w)). 2
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Figure 2: Rothe diagram of a Grassmannian permutation w = [136245]. Here uw = (u2 ∧ u3) ⊗ u3 ⊗ u3 is a lowest vector in an irreducible

representation of gl3 with lowest weight (0, 1, 3).

For convenience, we slightly generalize the notion of Schubert polynomials and KP modules. For
λ = code(w) ∈ Zn

≥0 (w ∈ S
(n)
∞ ) we write Sλ = Sw and Sλ = Sw. For a general λ ∈ Zn take k ∈ Z so

that λ+k1 ∈ Zn
≥0 and defineSλ = x−k1Sλ+k1 and Sλ = K−k1⊗Sλ+k1 (note that this does not depend

on the choice of k). We use both permutations and integer vectors as indices of Schubert polynomials and
KP modules, but we believe that it will cause no confusion.
A KP filtration of a weight b-moduleM is a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M of b-modules

such that each Mi/Mi−1 is isomorphic to some Sλi (λi ∈ Zn). It is clear from the definition that if M
has a KP filtration then ch(M) is a positive sum of Schubert polynomials.

4 A criterion for the existence of KP filtration
In [Wat14a], the author investigated characterizations of modules having KP filtrations. The method
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check that the projective cover of K(0,2,1) in C≤(0,2,1) is isomorphic to the KP module S(0,2,1) = S[1432],
which has character S[1432] = x21x2 + x21x3 + x1x

2
2 + x1x2x3 + x22x3.

In the proof of this characterization, we used the following structural result on KP modules. The current
proof of the following result in [Wat14a] uses a long case-by-case check, and we hope that there is a more
elegant proof.

For w ∈ S(n)
∞ and 1 ≤ i < j ≤ n, let Cij(w) = {p : (i, p) 6∈ D(w), (j, p) ∈ D(w)} (= {w(k) :

k > j, w(i) < w(k) < w(j)}) and let mij(w) = |Cij(w)|. Then, since e2iju
(p)
w = 0 for p ∈ Cij(w) and

eiju
(p)
w = 0 for p 6∈ Cij(w), we see that emij(w)+1

ij annihilates uw = u
(1)
w ⊗ u(2)w ⊗ · · · . The following

theorem states that the annihilator of uw is in fact generated by these elements:

Theorem 4.3 ([Wat14a, Theorem 4.1]) Let Iw is the left ideal of U(n+) generated by the elements
e
mij(w)+1
ij (1 ≤ i < j ≤ n). Then there exists an U(n+)-module isomorphism U(n+)/Iw ∼= Sw sending
1 mod Iw to uw. 2

Example 4.4 Let n = 4 and w = [25143] ∈ S(4)
∞ . Then the Rothe diagram D(w) is as in Figure 1, and

Iw is generated by e312, e13, e
2
14, e23, e24 and e234.

Note that Theorem 4.3 can be seen as an analog of the Joseph’s result ([Jos85, Theorem 3.4]) on
Demazure modules which states (in gln case) that the annihilator ideal of the lowest weight vector of
weight λ ∈ Zn in a Demazure module is generated by emax{λj−λi,0}+1

ij (1 ≤ i < j ≤ n).
Using Theorem 4.1, the following characterization of modules having KP filtrations can be shown

with a standard argument from the theory of highest-weight categories (in fact, one more trick is needed
[Wat14a, Lemma 7.1]):

Theorem 4.5 ([Wat14a, Corollary 7.6, Theorem 8.1]) Let M be a finite-dimensional weight b-module.
Then the followings are equivalent:

1. M has a KP filtration.

2. Exti(M,S∗λ ⊗Kρ) = 0 for all i ≥ 1 and λ ∈ Zn.

3. Ext1(M,S∗λ ⊗Kρ) = 0 for all λ ∈ Zn.

2

5 Applications
In this section we present two applications of Theorem 4.5. One application is the proof of the fact that
the tensor product Sw ⊗Sv of KP modules admits a KP filtration. This can be seen as a module-theoretic
counterpart of the classical fact that the product SwSv of Schubert polynomials is a positive sum of
Schubert polynomials, and it also gives a new proof to this fact. Another application is the Schubert-
positivity of the “plethystic composition” sλ[Sw] of a Schur function with a Schubert polynomial.

First we prepare some useful corollaries from Theorem 4.5:

Proposition 5.1 1. If M =M1 ⊕ · · · ⊕Mr, then M has a KP filtration if and only if each Mi has.

2. If 0 → L → M → N → 0 is exact and M and N have KP filtrations, then L also has a KP
filtration.
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Proof: 1. is easy since Ext1(M,N) =
⊕

Ext1(Mi, N) for any N . 2. also follows from Theorem 4.5,
since if 0 → L → M → N → 0 is an exact sequence then we have an exact sequence Ext1(M,A) →
Ext1(L,A)→ Ext2(N,A) for any A. 2

Using this, we can show that the tensor product of KP modules admits a KP filtration:

Theorem 5.2 ([Wat14b, Theorem 4.1]) For any w, v ∈ S(n)
∞ , the module Sw ⊗ Sv have a KP filtration.

Outline of Proof: First check the case w = si (this corresponds to Monk’s formula for Schubert
polynomials) by explicitly constructing a filtration. Then we see that Ssi ⊗ Ssj ⊗ · · · ⊗ Ssk ⊗ Sv have a
KP filtration for any i, j, . . . , k and v ∈ S(n)

∞ , and by Proposition 5.1.1,
∧j1 Ssi1 ⊗ · · · ⊗

∧jr Ssir ⊗ Sv
have a KP filtration for any i1, j1, . . . , ir, jr and v ∈ S(n)

∞ .
If w ∈ Sn, it can be shown, also using the cases of Monk’s formula, that for suitable i1 . . . , in−1 there

exists an exact sequence 0 → Sw →
∧i1 Ss1 ⊗ · · · ⊗

∧in−1 Ssn−1 → N → 0 such that N have a KP
filtration whose subquotients are of the form Su (u−1 >

lex
w−1). Then the claim follows by the induction

on w using the exact sequence 0→ Sw ⊗Sv →
∧i1 Ss1 ⊗ · · · ⊗

∧in−1 Ssn−1
⊗Sv → N ⊗Sv → 0 and

Proposition 5.1.2.
For a general w the claim follows by letting n large, since for n′ > n, bn-modules can be naturally

identified with bn′ -modules on which eij (j > n) acts by zero and under this identification the bn-module
Sw (w ∈ S(n)

∞ ⊂ S(n′)
∞ ) corresponds to the bn′ -module Sw. 2

Remark 5.3 As we pointed in [Wat14a] and [Wat14b], Theorem 5.2 gives a new description of general-
ized Littlewood-Richardson coefficients, in a manner somewhat similar to triple-intersection formula in
the geometric theory of Schubert calculus: for u, v, w ∈ Sn, if the polynomial SuSv is expanded into a
sum of Schubert polynomials, the coefficient of Sw is equal to the dimension of Homb(Su ⊗ Sv,S∗w0w ⊗
Kρ) ∼= Homb(Su ⊗ Sv ⊗ Sw0w,Kρ).

As a corollary of Theorem 5.2, we can show that the plethystic composition of a Schur function with a
Schubert polynomial is Schubert-positive:

Corollary 5.4 ([Wat14b, Corollary 4.3]) Let λ be a partition and sλ be the corresponding Schur func-
tion. Let w ∈ S

(n)
∞ and write Sw as a sum of monomials as Sw = xα + xβ + · · · . Then sλ[Sw] :=

sλ(x
α, xβ , . . .) is a positive sum of Schubert polynomials.

Proof: Let sλ denote the Schur functor corresponding to λ (here we are using the same symbol as Schur
functions, but we hope that it would cause no confusion). Then sλ(Sw) is a direct sum component of
S⊗|λ|w , and thus, by Proposition 5.1.1 and Theorem 5.2, have a KP filtration. Thus the claim follows since
sλ[Sw] is the character of sλ(Sw). 2

Remark 5.5 The method we used here, i.e. the use of KP modules and highest-weight category theory
for the study of Schubert positivity, is of course not only applicable for the proof of the positivity of
product and plethystic composition but also for the investigation of other positivity properties of Schubert
polynomials. For example, by considering the restriction of KP modules to certain subalgebra of b and
using the similar method here (i.e. using highest-weight category theory to reduce the problem to the
simplest case Ssi ), it can be shown that for any w ∈ S(n)

∞ and I = {i1 < · · · < ir}, J = {j1 < · · · < js}
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with I t J = {1, . . . , n}, the polynomial Sw(z1, . . . , zn) (zk =

{
xp (k = ip)

yq (k = jq)
) is a positive sum of

polynomials of the form Su(x1, . . . , xr)Sv(y1, . . . , ys). As one of the referees pointed out, this result
appears in a work [BS98, Theorem 4.5.4] of Bergeron and Sottile, where the coefficient appearing in the
restriction is related to the multiplication coefficients. It would be an interesting problem to investigate
module-theoretic counterpart to this relation.
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