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Cyclic Sieving and Plethysm Coefficients

David B Rush†

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract. A combinatorial expression for the coefficient of the Schur function sλ in the expansion of the plethysm
pdn/d ◦ sµ is given for all d dividing n for the cases in which n = 2 or λ is rectangular. In these cases, the coefficient
〈pdn/d◦sµ, sλ〉 is shown to count, up to sign, the number of fixed points of an 〈snµ, sλ〉-element set under the dth power
of an order n cyclic action. If n = 2, the action is the Schützenberger involution on semistandard Young tableaux
(also known as evacuation), and, if λ is rectangular, the action is a certain power of Schützenberger and Shimozono’s
jeu-de-taquin promotion.

This work extends results of Stembridge and Rhoades linking fixed points of the Schützenberger actions to ribbon
tableaux enumeration. The conclusion for the case n = 2 is equivalent to the domino tableaux rule of Carré and
Leclerc for discriminating between the symmetric and antisymmetric parts of the square of a Schur function.

Résumé. Une expression combinatoire pour le coefficient de la fonction de Schur sλ dans l’expansion du pléthysme
pdn/d◦sµ est donné pour tous d que disent n, dans les cas où n = 2, ou λ est rectangulaire. Dans ces cas, le coefficient
〈pdn/d ◦ sµ, sλ〉 se montre à compter, où l’on ignore le signe, le nombre des point fixés d’un ensemble de 〈snµ, sλ〉
éléments sous la puissance de d’une action cyclique de l’ordre n. Si n = 2, l’action est l’involution de Schützenberger
sur les tableaux semi-standard de Young (aussi connu sous le nom des évacuations), et si λ est rectangulaire, l’action
est une certaine puissance de l’avancement jeu-de-taquin de Schützenberger et Shimozono.

Ce travail étend les résultats de Stembridge et Rhoades, liant les point fixés des actions de Schützenberger aux tableaux
de ruban. Pour le cas n = 2, la conclusion est équivalent à la règle des tableaux de dominos de Carré et Leclerc, qui
distingue entre les parties symétriques et asymétriques du carré d’une fonction de Schur.

Keywords: plethysms, Schützenberger involution, jeu-de-taquin promotion, canonical bases, Kashiwara crystals,
cyclic sieving phenomenon

1 Introduction
A principal concern of algebraic combinatorics is the identification of collections of combinatorial objects
that occur in algebraically significant multiplicities. Perhaps the most celebrated success in this endeavor
is the Littlewood–Richardson rule, which gives a combinatorial description for the coefficient of each
Schur function arising in the expansion of a product of Schur functions on the Schur basis. For the case of
a Schur function sµ raised to the nth power, there is a natural order n cyclic action on the objects specified
by the Littlewood–Richardson rule for the coefficient of sλ, provided that n = 2 or λ is rectangular. In
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this extended abstract of [14], we present an algebraic expression for the number of fixed points under
each power of this cyclic action, à la the cyclic sieving phenomenon of [12]. In particular, we show that
the cardinality of each fixed point set is given up to sign by the coefficient of sλ in the expansion of a
plethysm involving sµ. Since the plethysm corresponding to the trivial action is snµ, what we put forth
may be viewed as an accoutrement to the Littlewood–Richardson rule that endows a series of associated
collections of objects with algebraic meaning, and, in so doing, underscores the power of the cyclic sieving
paradigm.

Let Λ be the ring of symmetric functions over Z. For all f, g ∈ Λ, if V andW are polynomial represen-
tations of GLm(C) with characters χV = f(x1, x2, . . . , xm) and χW = g(x1, x2, . . . , xm), respectively,
then χV⊕W = (f + g)(x1, x2, . . . , xm) and χV⊗W = (fg)(x1, x2, . . . , xm). Plethysm is a binary op-
eration on Λ (so named by Littlewood in 1950) that is compatible with representation composition in the
same sense that addition and multiplication correspond to representation direct sum and tensor product,
respectively. To wit, if ρ : GLm(C) → GLM (C) is a polynomial representation of GLm(C) with char-
acter g(x1, x2, . . . , xm), and σ : GLM (C) → GLN (C) is a polynomial representation of GLM (C) with
character f(x1, x2, . . . , xM ), then the composition σρ : GLm(C) → GLN (C) is a polynomial represen-
tation of GLm(C) with character (f ◦ g)(x1, x2, . . . , xm), where f ◦ g ∈ Λ denotes the plethysm of f
and g. A formal definition is given in section 2.

We are herein concerned with plethysms of the form pdn/d ◦ sµ, where µ is a partition, sµ denotes the
Schur function associated to µ, d divides n, and pn/d denotes the (n/d)th power-sum symmetric function,
x
n/d
1 + x

n/d
2 + · · · . Writing 〈 , 〉 for the Hall inner product on Λ, we arrive at a combinatorial description

of the coefficients 〈pdn/d ◦ sµ, sλ〉 for the cases in which n = 2 or λ is rectangular.
Let µ = (µ1, µ2, . . . , µm). If n = 2, the Littlewood–Richardson multiplicity 〈snµ, sλ〉 is the number

of semistandard Young tableaux of shape λ and content µµ := (µm, . . . , µ1, µ1, . . . , µm) for which the
reading word is anti-Yamanouchi in {1, 2, . . . ,m} and Yamanouchi in {m + 1,m + 2, . . . , 2m}. The
Schützenberger involution (also known as evacuation) on a semistandard tableau preserves the shape and
reverses the content, so it gives an action on the tableaux of shape λ and content µµ, which restricts to
those tableaux with words satisfying the aforementioned Yamanouchi conditions (cf. [14], Remark 4.21).

In general, the Littlewood–Richardson multiplicity 〈snµ, sλ〉 is the number of semistandard tableaux
of shape λ and content µn := (µ1, . . . , µm, µ1, . . . , µm, . . . , µ1, . . . , µm) for which the reading word is
Yamanouchi in the alphabets {km+ 1, km+ 2, . . . , (k+ 1)m} for all 0 ≤ k ≤ n− 1. On a semistandard
tableau, jeu-de-taquin promotion (introduced in [15]) preserves the shape and permutes the content by the
long cycle in Smn, so m iterations of promotion gives an action on the tableaux of shape λ and content
µn. If λ is rectangular, this action has order n and restricts to those tableaux with words satisfying the
requisite Yamanouchi conditions (cf. [14], Remark 4.31).

We are at last poised to state our main results.

Theorem 1.1. Let EYTab(λ, µµ) be the set of all semistandard tableaux of shape λ and content µµ with
reading word anti-Yamanouchi in {1, 2, . . . ,m} and Yamanouchi in {m + 1,m + 2, . . . , 2m}, and let ξ
act on EYTab(λ, µµ) by the Schützenberger involution. Then

|{T ∈ EYTab(λ, µµ) : ξ(T ) = T}| = ±〈p2 ◦ sµ, sλ〉.

Theorem 1.2. Let λ be a rectangular partition, and let PYTab(λ, µn) be the set of all semistandard
tableaux of shape λ and content µn with reading word Yamanouchi in the alphabets {km + 1, km +
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2, . . . , (k + 1)m} for all 0 ≤ k ≤ n − 1. Let j act on PYTab(λ, µn) by m iterations of jeu-de-taquin
promotion. Then, for all positive integers d dividing n,

|{T ∈ PYTab(λ, µn) : jd(T ) = T}| = ±〈pdn/d ◦ sµ, sλ〉.

From Theorems 3.1 and 3.2 in [8], we see that the Hall–Littlewood symmetric function Q′1n(q) spe-
cializes (up to sign) at q = e

2πi`
n to pgcd(n,`)n/gcd(n,`). Therefore, we may interpret Theorem 1.2 as analogous to

exhibiting an instance of the cyclic sieving phenomenon.

Corollary 1.3. Let λ be a rectangular partition. Let j act on PYTab(λ, µn) by m iterations of jeu-de-
taquin promotion. Then, for all integers `,

|{T ∈ PYTab(λ, µn) : j`(T ) = T}| = ±〈Q′1n(e
2πi`
n ) ◦ sµ, sλ〉.

Remark 1.4. The signs appearing in Theorems 1.1 and 1.2 are predictable, and depend upon λ, d, and n
only. Consult section 4 (or [14] itself), for more details.

[14] is by no means the first attempt at computing the coefficients in the expansions of power-sum
plethysms. In [3], a rule for splitting the square of a Schur function into its symmetric and antisymmetric
parts was devised, the crux of which was a demonstration that the coefficient 〈p2 ◦ sµ, sλ〉 counted, up
to sign, the number of domino tableaux of shape λ and content µ with Yamanouchi reading words. Two
years later, [8] introduced a new family of symmetric functions, today referred to as LLT functions, and
proposed that the plethysm pdn/d ◦ sµ could be expressed as the specialization of an LLT function at an
appropriate root of unity (as indeed pdn/d is the specialization of a Hall–Littlewood function). However,
the Lascoux–Leclerc–Thibon conjecture remains unproven, and the Carré–Leclerc rule has not been gen-
eralized to cases beyond n = 2, for the concept of Yamanouchi reading words has not been extended to
n-ribbon tableaux for n ≥ 3.

Thus, Theorem 1.1 does not give the first combinatorial expression for the coefficient 〈p2 ◦ sµ, sλ〉,
but it distinguishes itself from the existing Carré–Leclerc formula by its natural compatibility with the
Littlewood–Richardson rule. It is sufficiently robust that the techniques involved in its derivation are
applicable to a whole class of plethysm coefficients with n > 2, addressed in Theorem 1.2, which is
new in content and in form. Furthermore, the author has shown in unpublished work that a bijection of
[1] between domino tableaux and tableaux stable under evacuation restricts to a bijection between those
tableaux specified in the Carré–Leclerc rule and in Theorem 1.1, respectively. It follows that Theorem 1.1
actually recovers the Carré–Leclerc result.

To prove Theorems 1.1 and 1.2, we turn to the theory of Lusztig canonical bases, which provides an
algebraic setting for the Schützenberger actions evacuation and promotion. In particular, we consider
an irreducible representation of GLmn(C) for which there exists a basis indexed by the semistandard
tableaux of shape λ with entries in {1, 2, . . . ,mn} such that, if n = 2, the long element w0 ∈ Smn ↪→
GLmn permutes the basis elements (up to sign) by evacuation, and, if λ is rectangular, the long cycle
cmn ∈ Smn ↪→ GLmn permutes the basis elements (up to sign) by promotion.

With a suitable basis in hand, we proceed to compute the character of the representation at a particular
element of GLmn. If n = 2, we compute

χ(w0 · diag(x1, x2, . . . , xm, xm, . . . , x2, x1)),
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and, if λ is rectangular, we compute

χ(cmdmn · diag(y1, y2, . . . , yd, y1, y2, . . . , yd, . . . , y1, y2, . . . , yd)),

where the block diag(y1, y2, . . . , yd) occurs n/d times along the main diagonal, and yi in turn represents
the block diag(yi,1, yi,2, . . . , yi,m) for all 1 ≤ i ≤ d.

These character evaluations pick out the fixed points of the relevant order n cyclic actions. Furthermore,
they may be calculated by diagonalization of the indicated elements, for characters are class functions,
and the values of the irreducible characters of GLmn at diagonal matrices are well known. A careful
inspection of the resulting formulae yields the desired identities.

The relationship between w0 and evacuation was first discovered in [2], in the context of a basis dual
to Lusztig’s canonical basis. Herein we opt for an essentially equivalent basis constructed in [17], which
was used by Rhoades to detect the analogous relationship between cmn and promotion. From the ob-
servations that w0 and cmn lift the actions of evacuation and promotion, respectively, with respect to the
dual canonical basis (or something like it), [18] and [13] deduced correspondences between fixed points
of Schützenberger actions and ribbon tableaux. These theorems inspired our results.

Theorem 1.5 ([18], Corollary 4.2). Let Tab(λ, µµ) be the set of all semistandard tableaux of shape λ and
content µµ, and let ξ act on Tab(λ, µµ) by the Schützenberger involution. Then

|{T ∈ Tab(λ, µµ) : ξ(T ) = T}|

is the number of domino tableaux of shape λ and content µ.

Theorem 1.6 ([13], proof of Theorem 1.5). Let λ be a rectangular partition, and let Tab(λ, µn) be the
set of all semistandard tableaux of shape λ and content µn. Let j act on Tab(λ, µn) by m iterations of
jeu-de-taquin promotion. Then, for all positive integers d dividing n,

|{T ∈ Tab(λ, µn) : jd(T ) = T}|

is the number of (n/d)-ribbon tableaux of shape λ and content µd.

Unfortunately, the proofs of Theorems 1.5 and 1.6 cannot be directly adapted to obtain Theorems 1.1
and 1.2. In order for the Yamanouchi restrictions on our tableaux sets to be made to appear in our character
evaluations, an additional point of subtlety is needed. We find relief in the insights offered us by the theory
of Kashiwara crystals, which provides a framework not only for the study of the Schützenberger actions,
but also for the reformulation of the Yamanouchi restrictions in terms of natural operators on semistandard
tableaux.

Let g be a complex semisimple Lie algebra with weight lattice W , and choose a set of simple roots
∆ = {α1, α2, . . . , αt}. A g-crystal is a finite set B equipped with a weight map wt: B → W and a
pair of raising and lowering operators ei, fi : B → B t {0} for each i that obey certain conditions. Most
notably, for all b ∈ B, if ei · b is nonzero, then wt(ei · b) = wt(b) + αi, and if fi · b is nonzero, then
wt(fi · b) = wt(b)− αi.

If g = slmn, then W is a quotient of Zmn, and we may choose for our simple roots the images of the
vectors εi−εi+1 for 1 ≤ i ≤ mn−1, where εi denotes the ith standard basis vector for all 1 ≤ i ≤ mn. In
this case, we may take B to be the set of semistandard tableaux of shape λ with entries in {1, 2, . . . ,mn},
with the weight of each tableau encoded in its content. As we see in section 3, there exists a suitable choice
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of operators ei and fi so that B assumes the structure of a g-crystal, and that the word of a tableau b ∈ B
is Yamanouchi with respect to the letters i and i + 1 if and only if ei vanishes at b, and anti-Yamanouchi
with respect to i and i + 1 if and only if fi vanishes at b. Furthermore, evacuation and promotion act on
the set of crystal operators by conjugation (essentially), which explains why they act on the tableaux sets
indicated in our main theorems.

We close the introduction with an outline of the rest of the article. In section 2, we introduce plethysms,
and we recall the observation of [8] that the classical relationship between tableaux and Schur functions
evinces a more general relationship between ribbon tableaux and power-sum plethysms of Schur func-
tions. In section 3, we define Kashiwara crystals for a complex semisimple Lie algebra, before special-
izing to the slmn setting, where we show how to assign a crystal structure to the pertinent tableaux sets.
We also examine how the Schützenberger actions interact with the raising and lowering crystal operators.
Finally, in section 4, we sketch proofs of Theorems 1.1 and 1.2.

2 Background on Plethysms
In this extended abstract, we assume familiarity with the basic facts about Young tableaux and symmetric
functions. (Accounts of the fundamentals can be found in [4], Chapters 1-6; for a treatment specific to
our needs, see [14].) We start, then, with the rudiments of plethysms, following [11].

Definition 2.1. Let f, g ∈ Λ, and let g be written as a sum of monomials, so that g =
∑
η uηx

η , where
η ranges over an infinite set of compositions. Let {yi}∞i=1 be a collection of proxy variables defined by∏∞
i=1(1 + yit) =

∏
η(1 + xηt)uη . The plethysm of f and g, which we denote by f ◦ g, is the symmetric

function f(y1, y2, . . .).

Remark 2.2. Although the relation
∏∞
i=1(1 + yit) =

∏
η(1 + xηt)uη only determines the elementary

symmetric functions in the variables y1, y2, . . . (viz., e1(y1, y2, . . .) = y1 + y2 + · · · , e2(y1, y2, . . .) =
y1y2 + y1y3 + y2y3 + · · · , etc.), it is well known that the ring of symmetric functions is generated as
a Z-algebra by the elementary symmetric functions, so the plethysm f ◦ g = f(y1, y2, . . .) is indeed
well-defined.

The following observation follows immediately from Definition 2.1.

Proposition 2.3. For all f ∈ Λ, the map Λ→ Λ given by g 7→ g ◦ f is a ring homomorphism.

There exists a family of symmetric functions for which the other choice of map given by plethysm, i.e.
g 7→ f ◦ g, is also a ring homomorphism, for all f belonging to this family.

Definition 2.4. For all positive integers k, the kth power-sum symmetric function in the variables x1, x2, . . .
is pk := xk1 + xk2 + · · · .

Proposition 2.5. Let g ∈ Λ, and let k be a positive integer. Then pk ◦ g = g ◦ pk = g(xk1 , x
k
2 , . . .).

We may conclude that the map given by g 7→ pk ◦ g is a ring homomorphism for all positive integers
k. We are therefore permitted to introduce an adjoint operator, which we denote by ϕk, given by f 7→∑
κ〈f, pk◦sκ〉sκ, where the sum ranges over all partitions κ. Clearly, the equality 〈ϕk(f), g〉 = 〈f, pk◦g〉

holds for all f, g ∈ Λ, which explains the nomenclature.
Let κ be a partition. Just as the ordinary tableaux of shape κ index the monomials of the Schur function

sκ, the k-ribbon tableaux of shape κ index the monomials of the symmetric function ϕk(sκ).
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Theorem 2.6. Let κ be a partition, and suppose that the k-core of κ is empty. For all compositions η of
|κ|
k , we denote the monomial xη11 x

η2
2 · · · by xη , and, for all k-ribbon tableaux T of shape κ and content

η, we write xT for xη . Then ϕk(sκ) = εk(κ)
∑
T x

T , where the sum ranges over all k-ribbon tableaux of
shape κ, and εk(κ) denotes the k-sign of κ.

Proof. Let
(
κ(1), κ(2), . . . , κ(k)

)
be the k-quotient of κ. Since the k-core of κ is empty, it follows from

a result of [10] that ϕk(sκ) = εk(κ)sκ(1)sκ(2) · · · sκ(k) . However, from Equation 24 in [8], we see that
sκ(1)sκ(2) · · · sκ(k) =

∑
T x

T , where the sum ranges over all k-ribbon tableaux of shape κ, as desired.

In view of Theorem 2.6, it is natural to ask if there is an analogue of the Littlewood–Richardson rule
that describes the expansion coefficients of the power-sum plethysms pn◦sµ, or, more generally, pdn/d◦sµ,
for d dividing n. In the following sections, we outline how [14] provides a partial affirmative answer.

3 Crystal Structure on Tableaux
For a complex semisimple Lie algebra g, Kashiwara’s g-crystals constitute a class of combinatorial models
patterned on representations of g. If g is simply laced, there exists a set of axioms, enumerated in [19], that
characterize the crystals arising directly from g-representations, which he calls regular. Given a partition
κ with at most s positive parts, we may consider κ as a partition with s parts. The combinatorics of
the weight space decomposition of the irreducible sls-representation with highest weight encoded in κ is
captured in the regular sls-crystal structure assigned to the semistandard tableaux of shape κ with entries
in {1, 2, . . . , s}.

In this section, we review the crystal structure on tableaux, and we observe that it offers a natural setting
for the consideration of evacuation and promotion, due to the relationship between these actions and the
raising and lowering crystal operators. We also see that the crystal perspective facilitates a recasting of
the Yamanouchi conditions on tableaux reading words in terms of the vanishing or nonvanishing of the
raising and lowering operators at the corresponding tableaux, viewed as crystal elements. We begin with
the definition of a crystal, following [5].

Definition 3.1. Let g be a complex semisimple Lie algebra with weight lattice W . Let {α1, α2, . . . , αt}
be a choice of simple roots, and let {α∨1 , α∨2 , . . . , α∨t } be the corresponding simple coroots. A g-crystal
is a finite set B equipped with a map wt: B → W and a pair of operators ei, fi : B → B t {0} for each
1 ≤ i ≤ t that satisfy the following conditions:

(i) max{` : f `i · b 6= 0} −max{` : e`i · b 6= 0} = 〈wt(b), α∨i 〉 for all b ∈ B;

(ii) ei · b 6= 0 implies wt(ei · b) = wt(b) + αi and fi · b 6= 0 implies wt(fi · b) = wt(b) − αi for all
b ∈ B;

(iii) b′ = ei · b if and only if b = fi · b′ for all b, b′ ∈ B.

We refer to ei as the raising operator associated to αi, and we refer to fi as the lowering operator
associated to αi. We write εi(b) := max{` : e`i · b 6= 0} for the maximum number of times the raising
operator ei may be applied to b without vanishing, and we write φi(b) := max{` : f `i · b 6= 0} for the
maximum number of times the lowering operator fi may be applied to b without vanishing. If a g-crystal
B satisfies the additional conditions (P4), (P5), (P6), (P5’), and (P6’) of [19], we say that B is regular.
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Definition 3.2. Let B and B′ be g-crystals. A map of sets π : B → B′ is a morphism of crystals if
πei = eiπ and πfi = fiπ for all 1 ≤ i ≤ t. (Here we tacitly stipulate π(0) := 0.) If π is bijective, we say
π is an isomorphism.

Definition 3.3. A g-crystal B is connected if the underlying graph, in which elements b and b′ are joined
by an edge if there exists i such that ei · b = b′ or ei · b′ = b, is connected. We refer to the connected
components of the underlying graph as the connected components of B.

Remark 3.4. Regular connected g-crystals should be thought of in analogy with irreducible representa-
tions of g.

Definition 3.5. Let B be a g-crystal. An element b ∈ B is a highest weight element if ei vanishes at b for
all i. If b is the unique highest weight element of B, then B is a highest weight crystal of highest weight
wt(b).

Proposition 3.6 ([19]). Let g be simply laced, and let B be a regular connected g-crystal. Then B is a
highest weight crystal.

Proposition 3.7 ([19]). Let B and B′ be regular connected g-crystals with highest weight elements b and
b′, respectively. If φi(b) = φi(b

′) for all 1 ≤ i ≤ t, then B and B′ are isomorphic.

Specializing to the case g = sls, we take as our Cartan subalgebra h the subspace of traceless diagonal
matrices, and we identify h∗ with the quotient space Cs/(ε1 + ε2 + · · · + εs)C, where εi denotes the
ith standard basis vector for all 1 ≤ i ≤ s. Writing Ei for the image of εi in h∗ for all i, we note that
the weight lattice W is generated over Z by {E1, E2, . . . , Es}, and we choose the set of simple roots
{α1, α2, . . . , αs−1} in accordance with the rule αi := Ei − Ei+1 for all 1 ≤ i ≤ s− 1.

Proposition 3.8 ([6]). Let κ and ι be partitions, each with s parts, such that ιi ≤ κi for all positive parts
ιi of ι. Let Bκ/ι be the set of semistandard skew tableaux of shape κ/ι with entries in {1, 2, . . . , s}.

Let the maps

wt: Bκ/ι → Zs/(ε1 + ε2 + · · ·+ εs)Z
hi,j , ki,j : Bκ/ι → Z
ei, fi : Bκ/ι → Bκ/ι t {0}

be given for all 1 ≤ i ≤ s− 1 and j ∈ N by stipulating, for all T ∈ Bκ/ι:

• wt(T ) to be the image in Zs/(ε1 + ε2 + · · ·+ εn)Z of the content of T ;

• hi,j(T ) to be the number of occurrences of i + 1 in the jth column of T or to the right minus the
number of occurrences of i in the jth column of T or to the right;

• ki,j(T ) to be the number of occurrences of i in the jth column of T or to the left minus the number
of occurrences of i+ 1 in the jth column or to the left;

• ei(T ) to be the skew tableau with an i in place of an i+1 in the rightmost column for which hi,j(T )
is maximal and positive if such a column exists, and 0 otherwise;

• fi(T ) to be the skew tableau with an i+ 1 in place of an i in the leftmost column for which ki,j(T )
is maximal and positive if such a column exists, and 0 otherwise.
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Then the setBκ/ι equipped with the map wt and the operators ei, fi for all 1 ≤ i ≤ s−1 is an sls-crystal.

Proposition 3.9 ([19]). Let κ be a partition with s parts. The sls-crystal Bκ := Bκ/∅ defined in Propo-
sition 3.8 is a regular connected crystal of highest weight κ+ (ε1 + ε2 + · · ·+ εs)Z. The highest weight
element is the unique tableau of shape κ and content κ.

We now observe that Schützenberger’s jeu de taquin respects the crystal structure on tableaux in the
sense that jeu-de-taquin slides commute with the raising and lowering operators. Since evacuation and
promotion may be defined via jeu de taquin (cf. [15] and [16]), it should be no surprise that they inherit
this compatibility.

Proposition 3.10 ([9]). Let κ and ι be nonempty partitions such that ιi ≤ κi for all positive parts ιi of ι,
and let C be an inside corner of κ/ι. For all semistandard skew tableaux T of shape κ/ι, let jdt(T ) be
the result of a jeu-de-taquin slide on T starting from C, and set jdt(0) := 0. Then ei · jdt(T ) = jdt(ei ·T )
and fi · jdt(T ) = jdt(fi · T ) for all T ∈ Bκ/ι and 1 ≤ i ≤ s− 1.

Proposition 3.11 ([7]). Let κ be a partition with s parts, and let ξ : Bκ → Bκ be the Schützenberger
involution. Set ξ(0) := 0. Then, for all T ∈ Bκ:

(i) wt(ξ(T )) = w0 · wt(T );

(ii) ξ(ei · T ) = fs−i · ξ(T ) and ξ(fi · T ) = es−i · ξ(T ) for all 1 ≤ i ≤ s− 1.

Proposition 3.12 ([16]). Let κ be a partition with s parts, and let pr: Bκ → Bκ be jeu-de-taquin promo-
tion. Set pr(0) := 0. Then, for all T ∈ Bκ:

(i) wt(pr(T )) = cs · wt(T );

(ii) pr(ei · T ) = ei+1 · pr(T ) and pr(fi · T ) = fi+1 · pr(T ) for all 1 ≤ i ≤ s− 1.

The following theorem reveals the reason why we restrict our attention to rectangular partitions in the
statement of Theorem 1.2.

Theorem 3.13 ([16]). Let κ be a partition with s parts, and let pr: Bκ → Bκ be jeu-de-taquin promotion.
Then prs acts as the identity if and only if κ is rectangular.

To close the section, as promised, we reinterpret the Yamanouchi conditions on reading words as van-
ishing conditions on crystal operators.

Proposition 3.14. Let κ be a partition with s parts, and let T be a tableau of shape κ. For all 1 ≤ i <
i′ ≤ s − 1, the word of T is Yamanouchi (anti-Yamanouchi) in the subset {i, i + 1, . . . , i′} if and only if
the raising operators ei, ei+1, . . . , ei′−1 (lowering operators fi, fi+1, . . . , fi′−1) all vanish at T .

4 Proofs of Theorems 1.1 and 1.2
In this section, we sketch proofs of our main theorems. We start by delineating the properties of the basis
of Kazhdan–Lusztig immanants constructed in [17]. For κ a partition with at most s positive parts, we
consider κ as a partition with s parts. We note that the action of the long element w0 ∈ Ss ⊂ GLs(C) on
the immanants generating a GLs(C)-representation associated to κ lifts (up to sign) the Schützenberger
involution on the tableaux in the sls-crystal Bκ, and, analogously, that the action of the long cycle cs ∈
Ss ⊂ GLs(C) on immanants lifts (up to sign) jeu-de-taquin promotion if κ is rectangular.
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Theorem 4.1 ([13], [14]). Let κ be a partition of t with s parts, and let Vκ,s be the dual of the irreducible
polynomial GLs(C)-representation with highest weight κ. For all compositions η of t with s parts and
semistandard tableaux U of shape κ and content η, let Iη(U) ∈ Vs be the Kazhdan–Lusztig immanant
associated to η and U . Set

Iη := {Iη(U) : U is a semistandard tableau of shape κ and content η}.

Then the following claims hold.

(i) The set
⋃
η Iη , where η ranges over all compositions of t with s parts, constitutes a basis for Vκ,s.

(ii) For all compositions η of t with s parts, the set Iη constitutes a basis for the weight space of VT,s
corresponding to the weight −η, which we denote by Vκ,s,η .

(iii) Let w0 be the long element in Ss, and let ξ be the Schützenberger involution. Then

w0 · Iη(U) = (−1)v(κ) · Iw0·η(ξ(U)).

(iv) Let cs be the long cycle in Ss, and let pr be jeu-de-taquin promotion. If κ is rectangular with
exactly a positive parts, then

cs · Iη(U) = (−1)ηs(a−1)Ics·η(pr(U)).

4.1 Proof of Theorem 1.1
Let λ be a partition with 2m parts. Suppose that 2 divides |λ|, and let µ = (µ1, µ2, . . . , µm) be a partition
of |λ|/2. Let Bλ be the set of semistandard tableaux of shape λ, endowed with an sl2m-crystal structure
by the sets of raising and lowering operators {ei}2m−1i=1 and {fi}2m−1i=1 , respectively. The key to our proof
is the assignment of an (slm ⊕ slm)-crystal structure to Bλ that allows us to inspect the action of ξ on
its connected components. This process provides a combinatorial model for the decomposition into irre-
ducible components of the restriction to GLm(C)×GLm(C) of the irreducible GL2m(C)-representation
with highest weight λ, which underlies our character evaluation.

Recall that we chose {E1−E2, E2−E3, . . . , E2m−1−E2m} as the set of simple roots for sl2m. Here
we choose {E2 −E1, E3 −E2, . . . , Em −Em−1, Em+1 −Em+2, Em+2 −Em+3, . . . , E2m−1 −E2m}
as the set of simple roots for slm ⊕ slm.

Proposition 4.2. The setBλ equipped with the map wt, the set of raising operators {fi}m−1i=1 ∪{ei+m}
m−1
i=1 ,

and the set of lowering operators {ei}m−1i=1 ∪ {fi+m}
m−1
i=1 is a regular (slm ⊕ slm)-crystal.

Proposition 4.3. Let β and γ be partitions, each with m parts. Equip the set B(β,γ) := Bβ×Bγ with the
map wt×wt. For all 1 ≤ i ≤ m−1, let ei and fi act as the slm-crystal operators ei and fi, respectively,
on Bβ and as the identity on Bγ . For all m + 1 ≤ i ≤ 2m − 1, let ei and fi act as the identity on
Bβ and as the slm-crystal operators ei−m and fi−m, respectively, on Bγ . Then B(β,γ), together with the
set of raising operators {f1, f2, . . . , fm−1, em+1, em+2, . . . , e2m−1} and the set of lowering operators
{e1, e2, . . . , em−1, fm+1, fm+2, . . . , f2m−1}, is a regular connected (slm ⊕ slm)-crystal.

Theorem 4.4. Let C be a connected component of the (slm⊕ slm)-crystal Bλ. Let b be the unique highest
weight element of C. Then there exist partitions β and γ, each with m parts, such that b is of content βγ,
and C is isomorphic to B(β,γ).
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Corollary 4.5. Let C be a connected component of the (slm ⊕ slm)-crystal Bλ, and let b be the unique
highest weight element of C. If ξ(b) 6= b, then {T ∈ C : ξ(T ) = T} is empty. Otherwise, there exists a
partition β = (β1, β2, . . . , βm) such that b is of content ββ, and the isomorphism of crystals C ∼−→ B(β,β)

restricts to a bijection of sets

{T ∈ C : ξ(T ) = T} ∼−→ {(U,U ′) ∈ B(β,β) : ξ(U) = U ′}.

We proceed to the proof of Theorem 1.1 itself. Taking characters in theGL2m(C)-representation Vλ,2m,
we note that

χ(w0 · diag(x1, x2, . . . , xm, xm, . . . , x2, x1))

= (−1)v(λ) ·
∑

T∈Bλ:ξ(T )=T

x−2T1
1 x−2T2

2 · · ·x−2Tmm

= (−1)v(λ) ·
∑

θ`|λ|/2

|EYTabξ(λ, θθ)| · sθ(x−21 , x−22 , . . . , x−2m ),

where the first equality follows from Theorems 4.1, and the second equality follows from Corollary 4.5.
Since χ : GL2m(C)→ C is a class function, we see also that

χ(w0 · diag(x1, x2, . . . , xm, xm, . . . , x2, x1))

= χ(diag(x1, x2, . . . , xm,−xm, . . . ,−x2,−x1))

= sλ(x−11 , x−12 , . . . , x−1m ,−x−1m , . . . ,−x−12 ,−x−11 )

= (−1)v(λ)
∑
D

x−2D1
1 x−2D2

2 · · ·x−2Dmm ,

where the sum ranges over all semistandard domino tableaux of shape λ with entries in {1, 2, . . . ,m}.
(Here the second equality follows from Theorem 4.1, and the third from Remark 3.2 of [18].)

By Theorem 2.6,∑
D

x−2D1
1 x−2D2

2 · · ·x−2Dmm = ε2(λ) · φ2(sλ)(x−21 , x−22 , . . . , x−2m )

= ε2(λ) ·
∑

θ`|λ|/2

〈sλ, p2 ◦ sθ〉sθ(x−21 , x−22 , . . . , x−2m ).

Identifying the coefficients of sµ(x−21 , x−22 , . . . , x−2m ) in our two expressions, we may conclude that

|EYTabξ(λ, µµ)| = ε2(λ) · 〈sλ, p2 ◦ sµ〉.

4.2 Proof of Theorem 1.2
Let λ be a rectangular partition with mn parts. Suppose that n divides |λ|, and let µ = (µ1, µ2, . . . , µm)
be a partition of |λ|/n. LetBλ be the set of semistandard tableaux of shape λ, endowed with a slmn-crystal
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structure by the sets of raising and lowering operators {ei}mn−1i=1 and {fi}mn−1i=1 , respectively. The key to
our proof is the assignment of an (slm

⊕n)-crystal structure to Bλ that allows us to inspect the action of
j on its connected components. This process provides a combinatorial model for the decomposition into
irreducible components of the restriction to GLm(C)×n of the irreducible GLmn(C)-representation with
highest weight λ, which underlies our character evaluation.

Recall that we chose {E1−E2, E2−E3, . . . , Emn−1−Emn} as the set of simple roots for slmn. Here
we choose

⋃n−1
k=0{Ekm+1 −Ekm+2, Ekm+2 −Ekm+3, . . . , E(k+1)m−1 −E(k+1)m} as the set of simple

roots for slm⊕n.

Proposition 4.6. The set Bλ equipped with the map wt, the set of raising operators
⋃n−1
k=0{ekm+i}m−1i=1 ,

and the set of lowering operators
⋃n−1
k=0{fkm+i}m−1i=1 is a regular (slm

⊕n)-crystal.

Proposition 4.7. Let β0, β1, . . . , βn−1 be partitions, each withm parts. Equip the setB(β0,β1,...,βn−1) :=
Bβ0
×Bβ1

× · · · ×Bβn−1
with the map wt×wt× · · · ×wt. For all 1 ≤ i ≤ m− 1 and 0 ≤ k ≤ n− 1,

let ekm+i and fkm+i act as the slm-crystal operators ei and fi, respectively, on Bβk and as the identity
on Bβj for all j 6= k. Then B(β0,β1,...,βn−1), together with the set of raising operators

⋃n−1
k=0{ekm+i}m−1i=1

and the set of lowering operators
⋃n−1
k=0{fkm+i}m−1i=1 , is a regular connected (slm

⊕n)-crystal.

Theorem 4.8. Let C be a connected component of the (slm
⊕n)-crystal Bλ. Let b be the unique highest

weight element of C. Then there exist partitions β0, β1, . . . , βn−1, each with m parts, such that b is of
content β0β1 · · ·βn−1, and C is isomorphic to B(β0,β1,...,βn−1).

Corollary 4.9. Let C be a connected component of the (slm
⊕n)-crystal Bλ, and let b be the unique

highest weight element of C. If jd(b) 6= b, then {T ∈ C : jd(T ) = T} is empty. Otherwise, there exist d
partitions β0, β1, . . . , βd, each with m parts, such that b is of content (bβ0 , bβ1 , . . . , bβd−1

)(n/d), and the
isomorphism of crystals C ∼−→ B((β0,β1,...,βd)(n/d)) restricts to a bijection of sets

{T ∈ C : jd(T ) = T} ∼−→ {(U0, U1, . . . , Un−1) ∈ B((β0,β1,...,βd)(n/d)) : Uj = Uj′ ∀j ∼= j′ (mod d)}.

The remainder of the proof of Theorem 1.2 follows from a character evaluation in the GLmn(C)-
representation Vλ,mn. In the interest of brevity, we suppress the details, but they can be found in [14].
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