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Lattice structure of Grassmann-Tamari orders

Thomas McConville1†

1School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Abstract. The Tamari order is a central object in algebraic combinatorics and many other areas. Defined as the
transitive closure of an associativity law, the Tamari order possesses a surprisingly rich structure: it is a congruence-
uniform lattice. In this work, we consider a larger class of posets, the Grassmann-Tamari orders, which arise as an
ordering on the facets of the non-crossing complex introduced by Pylyavskyy, Petersen, and Speyer. We prove that
the Grassmann-Tamari orders are congruence-uniform lattices, which resolves a conjecture of Santos, Stump, and
Welker. Towards this goal, we define a closure operator on sets of paths inside a rectangle, and prove that the biclosed
sets of paths, ordered by inclusion, form a congruence-uniform lattice. We then prove that the Grassmann-Tamari
order is a quotient lattice of the corresponding lattice of biclosed sets.

Résumé. L’ordre Tamari est un objet central dans la combinatoire algébrique et de nombreux autres domaines. Définie
comme la fermeture transitive d’une loi d’associativité, l’ordre Tamari possède une structure étonnamment riche:
il est un treillis congruence uniforme. Dans ce travail, nous considérons une classe plus large de posets, les or-
dres Grassmann-Tamari, qui découlent comme un ordre sur les facettes du complexe non-croisement introduit par
Pylyavskyy, Petersen, et Speyer. Nous démontrons que les ordres Grassmann-Tamari sont treillis congruence uni-
formes, ce qui résout une conjecture de Santos, Stump, et Welker. Pour atteindre cet objectif, nous définissons
un opérateur de fermeture sur des ensembles de chemins à l’intérieur d’un rectangle, et prouver que les ensembles
bifermé de chemins, ordonné par inclusion, forment un réseau de congruence uniforme. Nous démontrons ensuite
que l’ordre Grassmann-Tamari est un treillis quotient du treillis correspondant d’ensembles bifermé.

Keywords: Tamari lattice, congruence-uniform, lattice quotient, noncrossing complex, Grassmann-Tamari associa-
hedron, biclosed sets

1 Introduction
The Tamari lattice is a poset of proper bracketings of a word, with covering relations defined by the
associativity law. Tamari lattices and their generalizations have appeared in many parts of the literature.
We recommend the book [14] for an introduction to many recent developments on these posets.

In this extended abstract, we consider a new generalization of the Tamari lattice, the Grassmann-Tamari
order, introduced by Santos, Stump, and Welker [12]. One of the conjectures they pose is that these posets
are lattices. We give an affirmative answer to this conjecture, and show that some of the very good lattice
properties of Tamari lattices hold in this larger family of posets; see Theorem 1.1 for a precise statement.

The Grassmann-Tamari order GTk,n is a partial order on the maximal “non-crossing” subsets of
(
[n]
k

)
,

the k-element subsets of {1, . . . , n}. Two sets I, J ∈
(
[n]
k

)
are crossing if it < jt < it+1 < jt+1 for some
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Fig. 1: (left) Two paths kissing along the indicated segment from v to v′. The paths correspond to the sets 145 and 246, which are crossing. (right)
A maximal family of non-kissing paths excluding horizontal and vertical paths.

t where I −J = {i1 < · · · < il} and J − I = {j1 < · · · < jl}. The sets I, J are non-crossing otherwise.
For example, {1, 4, 5} and {2, 3, 6} are non-crossing, whereas {1, 4, 5} and {2, 4, 6} are crossing. The
non-crossing complex ∆NC

k,n is the collection of all pairwise non-crossing subsets of
(
[n]
k

)
.

For l ≥ 1, let Cl be a chain poset with l elements. The complex ∆NC
k,n may be realized as a regular,

unimodular, Gorenstein triangulation of the order polytope Ok,n on Ck × Cn−k; i.e., the polytope in
Rk(n−k) defined by the inequalities 0 ≤ xi,j ≤ 1, xi,j ≤ xi+1,j , and xi,j ≤ xi,j+1 for 1 ≤ i ≤ k, 1 ≤
j ≤ n − k ([6, Theorem 8.1] or [12, Theorem 1.7]). This triangulation of Ok,n is distinct from the
equatorial triangulation defined in [10], which is not flag in general. As a consequence of this geometric
realization, after removing cone points, ∆NC

k,n is a pure, thin complex of dimension (k − 1)(n − k −
1) − 1. Moreover, there exists a simple polytope, the Grassmann-associahedron, with facial structure
anti-isomorphic to ∆NC

k,n . In the full paper, we present an alternative proof of this result by constructing
the dual Grassmann-associahedron by a sequence of suspensions and edge-stellations, starting from an
empty complex.

Any triangulation of Ok,n naturally gives rise to a monomial basis for the coordinate ring of the Grass-
mannian, the C-algebra generated by the maximal minors of a k × n matrix of indeterminates (xij) [6].
Namely, a monomial

∏r
1 xIj is in the basis if {I1, . . . , Ir} is a face of the triangulation. The classical

standard basis for this algebra is indexed by semistandard Young tableaux. The columns of a semis-
tandard Young tableaux satisfy a compatibility condition that resembles a non-nesting analogue of the
non-crossing condition defined above. Thus these two bases may be viewed as “opposite” in some sense.
One may hope to develop a straightening law for these monomials, though we do not pursue this here.

Let J be the set of order ideals of Ck × Cn−k. The Hibi ideal is the ideal generated by {xIxJ −
xI∩JxI∪J : I, J ∈ J ) in the polynomial ring on {xI : I ∈ J }. By results of [13], regular unimodular
triangulations of Ok,n are in bijection with squarefree monomial initial ideals of the Hibi ideal. As
observed in the introduction of [12], the triangulation induced by ∆NC

k,n corresponds to a particularly nice
initial ideal. We refer to the survey [2, Section 6] for more background on Hibi ideals.

There is a natural orientation on the dual graph of ∆NC
k,n . If two facets F1 = F ∪{I}, F2 = F ∪{J} are

adjacent, then there is a unique index t for which it < jt < it+1 < jt+1 where I − J = {i1 < · · · < il}
and J − I = {j1 < · · · < jl}. We orient the edge F1 → F2 if the pair {it, it+1} is lexicographically
smaller than {jt, jt+1}. For example, {145, 146, 236, 245} and {146, 236, 245, 246} are adjacent facets
of ∆NC

3,6 with orientation {145, 146, 236, 245} → {146, 236, 245, 246} since 145 and 246 cross at 15 and
26. Defined by Santos, Stump, and Welker in [12], the Grassmann-Tamari order GTk,n is the transitive
closure of this relation. The smallest Grassmann-Tamari order not isomorphic to a Tamari lattice is drawn
in Figure 4.
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The non-crossing condition translates to a non-kissing condition on paths via the standard bijection
between k-subsets of [n] and paths in a k × (n − k) rectangle with South and East steps. For example,
the set {1, 4, 5} corresponds to the path from the NW-corner to the SE-corner of a 3 × 3 rectangle such
that the first, fourth, and fifth steps are to the South, while the others are to the East. Two paths p1, p2
in the plane are kissing if they agree on some subpath between vertices v and v′, p1 enters v from the
West and leaves v′ to the South, and p2 enters v from the North and leaves v′ to the East; see Figure 1.
The non-kissing complex ∆NK(λ) associated to a (possibly not rectangular) shape λ is the collection of
pairwise non-kissing paths supported by λ. A poset GT(λ) analogous to the Grassmann-Tamari orders
may be defined on the facets of this complex. We call GT(λ) the Grid-Tamari order; see Section 2. If λ
is a k × (n− k) rectangle, then GT(λ) is isomorphic to GTk,n.

Our main result is

Theorem 1.1 For any shape λ, GT(λ) is a congruence-uniform lattice.

We recall congruence-uniformity and related lattice properties in Section 3.
To prove Theorem 1.1, we express GT(λ) as a lattice quotient of a much simpler lattice. Namely,

we define a finite topological space whose clopen sets, which we call biclosed sets, form a congruence-
uniform lattice under inclusion. Then we define a map from the collection of biclosed sets to facets of the
non-kissing complex that carries this lattice structure. A similar approach was applied by Nathan Reading
to prove that Tamari posets are lattice quotients of the weak order on the symmetric group (see e.g. [8]).

The rest of this extended abstract is organized as follows. In Section 2, we establish the purity and
thinness of the non-kissing complex combinatorially, similar to the methodology employed in [12] for
proving purity and thinness of the non-crossing complex. We close the section by defining the orientation
on the dual graph of the non-kissing complex whose transitive closure is a Grid-Tamari order. We empha-
size that this directed graph is acyclic as a consequence of Theorem 1.1. A geometric proof of acyclicity
in the non-crossing case appears in [12].

To set up the appropriate generalization of the weak order, we prove some general results on biclosed
sets in Section 3. Biclosed sets may be defined for any closure operator on a set, though the resulting
poset of biclosed sets may not be interesting. We provide some conditions on the closure that makes the
poset of biclosed sets a semidistributive or congruence-normal lattice. In particular, these conditions are
satisfied by the convex closure on the positive roots of a finite root system.

In Section 4, we introduce a poset of biclosed subsets of segments in a shape λ. We show that this poset
satisfies the hypotheses given in Section 3, so it is a congruence-uniform lattice.

A special lattice congruence on the lattice of biclosed sets of segments is presented in Section 5. In
Section 6, we define a map η from biclosed sets of segments to the facets of the non-kissing complex,
and show that the fibers of η are precisely the equivalence classes of this lattice congruence. We deduce
Theorem 1.1 by comparing the order induced by η with the Grid-Tamari order.

In this extended abstract, most of the intermediary results are illustrated by example in place of proof.
Proofs will appear in the full version.

2 Non-kissing complexes
A shape λ is a finite (vertex)-induced subgraph of the Z × Z square grid. A vertex v ∈ λ is interior if λ
contains the 2× 2 grid centered at v. Otherwise, v is a boundary vertex. A horizontal (vertical) edge e of
λ is interior if the 1× 2 (2× 1) box centered at e is contained in λ.
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Fig. 2: A shape with a path w0, w1, w2, w3, w4.

A path supported by λ is a sequence of vertices v0, . . . , vt such that

• v0 and vt are boundary vertices,

• v1, . . . , vt−1 are interior vertices, and

• vi is one step South or East of vi−1 for all i.

A path supported by λ is called a segment if its endpoints are also interior vertices. If s is a segment
containing vertices v and v′, then s[v, v′] denotes the sub-segment of s whose endpoints are v and v′. The
initial (terminal) vertex of a segment s is denoted sinit (sterm).

A path w0, w1, w2, w3, w4 is drawn in Figure 2. This path contains the segment w2, w3, for example.
Two paths p1, p2 are kissing if they share vertices v, v′ such that

• p1[v, v′] = p2[v, v′],

• p1 enters v from the West and leaves v′ to the South, and

• p2 enters v from the North and leaves v′ to the East.

Otherwise p1 and p2 are non-kissing. The non-kissing complex ∆NK(λ) is the flag simplicial complex
whose faces are collections of pairwise non-kissing paths supported by λ. As horizontal and vertical paths
are non-kissing with any path, we define the reduced non-kissing complex ∆̃NK(λ) to be the deletion of
all horizontal and vertical paths from ∆NK(λ).

Although a pair of non-kissing paths may twist around each other several times, there is a natural way
to totally order paths that contain a specific edge. Let e be an interior edge of λ. If p1 and p2 are distinct
non-kissing paths containing e, then they agree on some maximal subpath p1[v, v′] containing e. Order
p1 ≺e p2 if either p1 enters v from the North or p1 leaves v′ to the South. We note that both cases may
not occur if v or v′ is a boundary vertex.

If F is a set of non-kissing paths, we say a path p ∈ F is the bottom path (top path) at an edge e if p is
minimal (maximal) in F with respect to ≺e.

Theorem 2.1 Let F be a facet of ∆NK(λ).

1. The map that takes an interior edge e to the top path at e is a bijection between vertical interior
edges of λ and non-horizontal paths in F .
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2. For paths p ∈ F with at least one turn, there exists a unique path q distinct from p such that
F − {p} ∪ {q} is non-kissing. Moreover, p and q kiss at a unique segment.

A simplicial complex is pure if its facets all have the same dimension. A pure complex is thin if every
face of codimension 1 is contained in exactly two facets. Theorem 2.1 immediately implies the following
corollary.

Corollary 2.2 For any shape λ, the reduced non-kissing complex ∆̃NK(λ) is a pure, thin simplicial
complex.

Example 2.3 We illustrate Theorem 2.1 with the facet F = {145, 146, 236, 245} of ∆̃NC
3,6 . The sets in F

correspond to the four non-kissing paths drawn in Figure 1. Including the two vertical paths 234 and 345,
each of the six paths in F ∪ {234, 345} is the top path at a unique interior vertical edge.

The unique facet distinct from F containing F − {145} is (F − {145}) ∪ {246}. If one removes 145
from F , then 245 is on top at two different vertical edges. The segment supported by 245 between these
two vertical edges is the unique segment along which the paths 145 and 246 kiss.

The dual graph of a pure thin complex is the set of facets where two facets are adjacent if they intersect
at a codimension 1 face. We define an orientation on the dual graph of ∆̃NK(λ) as follows. Let F1, F2

be adjacent facets, and let p1 ∈ F1 − F2, p2 ∈ F2 − F1. Then p1 and p2 are kissing at a unique segment,
say p1[v, v′]. Orient the edge F1 → F2 if p1 enters v from the West (so p2 enters v from the North). Let
GT(λ) be the transitive closure of this relation.

Theorem 2.4 (see [12], Theorem 2.17) GT(λ) is a partially ordered set.

We call GT(λ) the Grid-Tamari order. When λ is a 2×n rectangle, GT(λ) is the usual Tamari lattice.
For general λ, Theorem 2.4 is far from obvious. In [12], it is proved for all rectangle shapes by identifying
GT(λ) with a poset of facets of a regular triangulation of a polytope, whose order is induced by a generic
linear functional. We prove this combinatorially in Section 6 along with Theorem 1.1 by identifying
GT(λ) with a lattice quotient of some other lattice.

3 Biclosed Sets
A closure operator on a set S is an operator X 7→ X on subsets of S such that for X,Y ⊆ S,

X ⊆ X,

X = X, and

X ⊆ Y implies X ⊆ Y .

In addition, we assume ∅ = ∅. A subset X of S is closed if X = X . A subset X is biclosed if X and
S \X are both closed. We let Bic(S) be the poset of biclosed subsets of S ordered by inclusion. By our
assumption, S and ∅ are always biclosed.

What we call biclosed sets are often called clopen sets elsewhere in the literature; see, for example
[11]. The term biclosed typically refers to a subset of a convex geometry which is 2-closed and whose
complement is 2-closed. We choose the term biclosed because all of the closure operators we consider
come from some convex geometry in this way. This connection will be explained further in the full paper.
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A collection B of subsets of S is ordered by single-step inclusion if for all X,Y ∈ B such that X ( Y
there exists y ∈ Y \ X such that X ∪ {y} ∈ B. If ∅, S ∈ B and B is ordered by single-step inclusion,
then it is a graded poset with rank function X 7→ |X| for X ∈ B; in particular, every maximal chain has
length |S|.

A lattice L is meet-semidistributive if L satisfies x∧ z = y ∧ z ⇒ (x∨ y)∧ z = x∧ z for x, y, z ∈ L.
A lattice is join-semidistributive if its dual is meet-semidistributive. A lattice is semidistributive if it is
both meet- and join-semidistributive. We give some criteria on semidistributivity for biclosed sets.

Theorem 3.1 Let S be a set with a closure operator. If

1. Bic(S) is ordered by single-step inclusion, and

2. W ∪ (X ∪ Y ) \W is biclosed for W,X, Y ∈ Bic(S) with W ⊆ X ∩ Y ,

then Bic(S) is a semidistributive lattice.

Suppose Bic(S) is a lattice. If W,X, Y ∈ Bic(S) with W ⊆ X ∩ Y , then

X ∪ Y ⊆W ∪ (X ∪ Y ) \W ⊆ X ∪ Y ⊆ X ∨ Y,

so X ∨ Y and W ∪ (X ∪ Y ) \W are equal if the latter is biclosed.

Example 3.2 The inversion set of a permutation π of [n] is the collection of pairs {i, j} for which
π−1(i) > π−1(j). For example, the inversion set of 2314 is {12, 13}. The weak order on permutations of
[n] is the ordering by inclusion of inversion sets.

The weak order on permutations may be identified with a collection of “biclosed” subsets of
(
[n]
2

)
,

ordered by inclusion. A subset X of
(
[n]
2

)
is closed if {i, k} is in X whenever {i, j} and {j, k} are in X

for some j with i < j < k. Then X is biclosed if both X and
(
[n]
2

)
− X are closed. The map taking

a permutation to its inversion set is an isomorphism between the weak order and the poset of biclosed
subsets of

(
[n]
2

)
.

More generally, the weak order on any finite Coxeter group may be identified with a poset of biclosed
sets of positive roots ordered by inclusion. That these posets are ordered by single-step inclusion is
well-known. Dyer proved that W ∪ (X ∪ Y ) \W is a biclosed set whenever W,X, Y are biclosed and
W ⊆ X ∩ Y [4]. He also proved this holds for infinite root systems if X ∪ Y is finite. By Theorem 3.1
we may deduce that the weak order for finite lower intervals of (possibly infinite) Coxeter groups is a
semidistributive lattice. Other proofs of semidistributivity appear in [5] and [7]; see also [9, Section 8]
for a refinement of this result.

A subset C of a poset P is order-convex if z ∈ C whenever x, y ∈ C and x ≤ z ≤ y. Given an
order-convex subset C of P , the doubling P [C] is the induced subposet of P × {0, 1} with elements

P [C] = (P≤C × {0}) t [(P − P≤C) ∪ C]× {1},

where P≤C = {x ∈ P : (∃c ∈ C) x ≤ c}. If P is a lattice, then P [C] is a lattice where

(x, ε) ∨ (y, ε′) =

{
(x ∨ y,max(ε, ε′)) if x ∨ y ∈ P≤C
(x ∨ y, 1) otherwise

,
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Fig. 3: A sequence of doublings, ending with the weak order on S4.

for (x, ε), (y, ε′) ∈ P [C]. A finite lattice L is congruence-normal if there exists a sequence of lattices
L1, . . . , Lt such that L1 is the one-element lattice, Lt = L, and for all i, there exists an order convex
subset Ci of Li such that Li+1

∼= Li[Ci]. A finite lattice is congruence-uniform (or bounded) if it is both
congruence-normal and semidistributive.

The weak order on permutations is a congruence-normal lattice; see Figure 3 for a sequence of dou-
blings that creates the weak order on S4. The general case is discussed in Example 3.5.

Congruence-normal and congruence-uniform lattices admit other characterizations in terms of lattice
congruences [3]. Additionally, congruence-uniform lattices may be characterized as lattice quotients of
free lattices for which every fiber is a closed interval. As free lattices on finite sets are typically infinite,
this interval property is quite special.

For our purposes, it is easier to employ Reading’s characterization of congruence-normal lattices by
CN-labelings defined as follows. For elements x and y of a poset P , y covers x if x < y and x ≤ z ≤ y
implies x = z or z = y for z ∈ P . We write x l y if y covers x, and let Cov(P ) denote the set of pairs
(x, y) for which x l y. An edge-labeling of a poset P is a function from Cov(P ) to some label set R.
An edge-labeling λ : L → R from a lattice L to a poset (R,�) is a CN-labeling if L and its dual L∗

satisfy the following condition: For elements x, y, z ∈ L, (z, x), (z, y) ∈ Cov(L) and maximal chains
C1, C2 ∈ [z, x ∨ y] with x ∈ C1, y ∈ C2,

(CN1) The elements x′ ∈ C1, y
′ ∈ C2 such that (x′, x ∨ y), (y′, x ∨ y) ∈ Cov(L) satisfy

λ(z, x) = λ(y′, x ∨ y), λ(z, y) = λ(x′, x ∨ y).

(CN2) If (u, v) ∈ Cov(C1) with z < u, v < x ∨ y, then λ(z, x) ≺ λ(u, v) and λ(z, y) ≺ λ(u, v).

(CN3) The labels on Cov(C1) are all distinct.

Theorem 3.3 ([7], Theorem 4) A finite lattice L is congruence-normal if and only if it admits a CN-
labeling.

A CN-labeling of the Grassmann-Tamari order GT3,6 is drawn in Figure 4.

Theorem 3.4 Let (S,≺) be a poset with a closure operator. Assume that

1. Bic(S) is ordered by single-step inclusion,

2. W ∪ (X ∪ Y ) \W is biclosed for W,X, Y ∈ Bic(S) with W ⊆ X ∩ Y , and
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Fig. 4: (left) GT3,6 (right) Ordering on edge labels

3. if x, y, z ∈ S with z ∈ {x, y} − {x, y} then x ≺ z and y ≺ z.

Then Bic(S) is a congruence-normal lattice.

The first hypothesis in Theorem 3.4 gives a natural labeling of the covering relations in Bic(S). The
third hypothesis gives an order structure on these labels. The proof of Theorem 3.4 amounts to showing
that this labeling is a CN-labeling.

Example 3.5 For the closure operator on
(
[n]
2

)
in Example 3.2, we define a partial order {i, j} � {k, l} if

k ≤ i < j ≤ l. As this partial order satisfies property (3), we deduce that the weak order on permutations
is congruence-normal by Theorem 3.4. This holds more generally for the weak order of any finite Coxeter
group ([1, Theorem 6] or [7, Theorem 27]).

4 Biclosed Sets of Segments
For the remainder of this abstract, we fix a shape λ and let S denote the set of segments supported by λ,
partially ordered by inclusion. Two segments s and t are composable if sterm is one unit North or West of
tinit. If s and t are composable, then the composite s ◦ t is the segment containing both s and t. Given a
set X of segments of λ, say X is closed if s ◦ t ∈ X whenever s, t ∈ X and s ◦ t exists; see Figure 5. We
let Bic(S) denote the poset of biclosed sets of segments, as in Section 3.

Example 4.1 Suppose λ is a 2×n rectangle. Labeling the interior vertices 1, . . . , n−1 from left to right,
a segment s may be identified with the set {i, j} ∈

(
[n]
2

)
where i is the label on sinit and j − 1 is the label

on sterm. The closure on segments then agrees with the closure on
(
[n]
2

)
defined in Example 3.2. Hence,

Bic(S) is isomorphic to the weak order on permutations of [n].

Theorem 4.2 For S and λ defined above,
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(1) (2) (3) (4)

Fig. 5: (1) Two composable segments. (2) A biclosed set X of five segments. (3) X↓. (4) X↑.

1. Bic(S) is ordered by single-step inclusion,

2. W ∪ (X ∪ Y )−W is biclosed for W,X, Y ∈ Bic(S) with W ⊆ X ∩ Y , and

3. if s, t, u ∈ S such that s ◦ t = u, then s ( u and t ( u.

Applying Theorems 3.1 and 3.4, we deduce

Corollary 4.3 Bic(S) is a congruence-uniform lattice.

The hypotheses of Theorems 3.1 and 3.4 were chosen with two examples in mind, namely the 2-closure
on finite root systems and the closure operator defined in this section. For the 2-closure on a real simplicial
hyperplane arrangement, the first two hypotheses hold, but the third may not. In this case, a weaker version
of the acyclic condition is enough to prove congruence-normality [7, Theorem 25].

An alternative approach to the proof of congruence-uniformity of Bic(S) would be to apply some of
the results of [11]. In their language, the (po)set S forms an algebraic closure space of semilattice type.
From their general results about such spaces, the congruence-uniformity of Bic(S) then follows from its
semidistributivity.

5 A quotient of Bic(S)
If s, t ∈ S such that t ⊆ s, we say t is a SW-subsegment (NE-subsegment) of s if

• sinit = tinit or s enters tinit from the North (West), and

• sterm = tterm or s leaves tterm to the East (South).

Given a biclosed set X of segments, let X↓ be the set of segments s in X such that t is in X whenever
t is a SW-subsegment of s. Let X↑ be the set of segments s such that there exists t in X that is a
NE-subsegment of s. An example is shown in Figure 5.

Lemma 5.1 The following results hold.

1. X 7→ X↑ is a closure operator on Bic(S).

2. X 7→ X↓ is a closure operator on the dual of Bic(S).



426 Thomas McConville

3. X↓ = Y ↓ if and only if X↑ = Y ↑ for X,Y ∈ Bic(S).

An equivalence relation Θ on a lattice L is a lattice congruence if x ≡ y mod Θ implies x∨z ≡ y∨z
mod Θ and x ∧ z ≡ y ∧ z mod Θ for x, y, z ∈ L. The set of equivalence classes L/Θ of a lattice
congruence forms a lattice where [x] ∨ [y] = [x ∨ y] and [x] ∧ [y] = [x ∧ y] for x, y ∈ L. We say
L/Θ is a quotient lattice of L, and the natural map L 7→ L/Θ is a lattice quotient map. The following
characterization of lattice congruences is well-known.

Proposition 5.2 Let Θ be an equivalence relation on a finite lattice L. If

1. the equivalence classes of Θ are all closed intervals of L, and

2. the maps π↑ and π↓ taking an element of L to the largest (respectively, smallest) element of its
equivalence class are both order-preserving,

then Θ is a lattice congruence.

Let Θ be the equivalence relation on Bic(S) where X ≡ Y mod Θ if X↓ = Y ↓. Using Lemma 5.1
with Proposition 5.2, we deduce

Corollary 5.3 Θ is a lattice congruence on Bic(S).

Example 5.4 Let λ be the 2 × n rectangle from Example 4.1. If X is a biclosed subset of S, then
X↓ is the set obtained by removing horizontal segments for which some initial part is not in X . The
set X↑ is obtained by adding horizontal segments to X for which some initial part is not in X but the
corresponding terminal part is in X . By this observation it follows that X↓ is the largest biclosed set for
which (X↑)↓ = X↓. In particular, the equivalence classes are all closed intervals of the form [X↓, X↑]
for some X ∈ Bic(S). Moreover, π↑(X) = X↑ and π↓(X) = X↓, so π↑ and π↓ are both order-
preserving maps, thus verifying Corollary 5.3 in this case. The argument for general shapes follows
similar reasoning.

When λ is a 2 × n rectangle, the bijection in Example 4.1 takes biclosed sets X for which X↓ = X
to inversion sets of 312-avoiding permutations. Indeed, if a permutation σ = σ1 · · ·σn contains a 312
pattern, say with values i < j < k, then the corresponding biclosed set X has a long segment labeled
{i, k} for which the initial part {i, j} is not in X .

6 The Grid-Tamari order as a lattice quotient
Let EV denote the set of interior vertical edges in λ and let P be the set of paths supported by λ.

We define a function η : Bic(S) → 2P as follows. Let X ∈ Bic(S) be given. If e ∈ EV is an edge
from u to v, let pe be the path such that for interior vertices u′ ∈ pe[·, u] and v′ ∈ pe[v, ·]:

(i) if pe[u′, u] is (not) in X then pe enters u′ from the North (West); and

(ii) if pe[v, v′] is (not) in X then pe leaves v′ to the East (South).

Let η(X) be the union of {pe : e ∈ EV }with the set of horizontal paths supported by λ. For example, if
X is the biclosed set of six black segments in Figure 6, each of the six interior vertical edges corresponds
to a non-horizontal path in η(X). In Figure 6, the four paths corresponding to the four marked purple
edges are drawn. The other two vertical edges correspond to vertical paths.
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Fig. 6: The four non-vertical and non-horizontal paths in η(X) where X is the set of black segments.

Proposition 6.1 η(X) is a maximal collection of non-kissing paths.

When Bic(S) is viewed as a lattice, we claim that η defines a lattice quotient map, thus endowing the
set of facets of ∆NK(λ) with the structure of a lattice. Explicitly, we claim that η is surjective, and if X
and Y are biclosed, then η(X) = η(Y ) if and only if X ≡ Y mod Θ.

To prove this claim, we define another function φ from facets of ∆NK(λ) to Bic(S) as follows. For
a path p, let Ap be the set of SW-subsegments of p. If F is a facet of ∆NK(λ), we define φ(F ) to be⋃

p∈F Ap. It may be shown that φ and η are inverse bijections between facets of ∆NK(λ) and biclosed
sets X for which X↓ = X .

To complete the proof of Theorem 1.1, it remains to show that the ordering on facets of ∆NK(λ)
induced by η is identical to the Grid-Tamari order. For this, it suffices to compare covering relations.
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