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Abstract. The structure of zero and nonzero minors in the Grassmannian leads to rich combinatorics of matroids.
In this paper, we investigate even richer structure of possible equalities and inequalities between the minors in the
positive Grassmannian. It was previously shown that arrangements of equal minor of largest value are in bijection
with the simplices in a certain triangulation of the hypersimplex that was studies by Stanley, Sturmfels, Lam and
Postnikov. Here we investigate the entire set of arrangements and its relations with this triangulation. First, we show
that second largest minors correspond to the facets of the simplices. We then introduce the notion of cubical distance
on the dual graph of the triangulation, and study its relations with arrangement of t-th largest minors. Finally, we
show that arrangements of largest minors induce a structure of partially ordered set on the entire collection of minors.
We use the Lam and Postnikov circuit triangulation of the hypersimplex to describe a 2-dimensional grid structure of
this poset.

Résumé. La structure des mineurs nuls et non nuls dans la Grassmannienne amène à une combinatoire très riche de
matroı̈des. Dans cet article, nous examinons la structure encore plus riche des égalités et inégalités possibles entre
les mineurs de la Grassmannienne positive. Il a été montré précédemment que les arrangements de mineurs égaux
de valeur maximale sont en bijection avec les simplexes d’une certaine triangulation de l’hypersimplexe étudiée par
Stanley, Sturmfels, Lam et Postnikov. Nous examinons ici l’ensemble total des arrangements et ses relations avec
cette triangulation. Tout d’abord, nous montrons que les deuxièmes plus grands mineurs correspondent aux facettes
des simplexes. Nous introduisons ensuite la notion de distance cubique sur le graphe dual de la triangulation, et nous
étudions ses relations avec l’arrangement des t-ièmes plus grands mineurs. Enfin, nous montrons que les arrangements
de mineurs maximaux induisent une structure d’ensemble partiellement ordonné sur la collection totale des mineurs.
Nous utilisons la triangulation-circuit de Lam et Postnikov de l’hypersimplexe pour décrire une structure de réseau
2-dimensionnel sur ce poset.
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1 Introduction
In this paper, we study the relations between equalities and inequalities of minors in the positive Grass-
mannian and the triangulation of the hypersimplex. This study is strongly tied to various combinatorial
objects such as the positive Grassmannian and its stratification [Pos06], alcoved polytopes[LP07], sorted
sets and Gröbner bases [Stu96], as well as many other objects in algebraic combinatorics and beyond.

The notion of total positivity was originally introduced by Schoenberg [Sch30] and Gantmacher and
Krein [GK41] in the 1930s. The classical theory of total positivity deals with totally positive matrices-
matrices in which all minors of all orders are positive. Later, the theory was extended by Lusztig in
the general Lie theoretic setup through definition of the positive part for a reductive Lie group G and a
generalized partial flag manifold G/P . In [Pos06] it was shown that the space of totally positive matrices
can be embedded in the positive Grassmannian, and this embedding unveils symmetries which are hidden
on the level of matrices. Thus it is very natural to discuss equalities and inequalities of minors in the more
general settings of the positive Grassmannian.

The number and positioning of equal minors in totally positive matrices was studied in several recent
papers. In [FFJM14], it was shown that the number of equal entries in a totally positive n × n matrix
is O(n4/3). The authors also discussed positioning of equal entries and obtained relations to the Bruhat
order of permutations. In [FRS14] it was shown, using incidences between points and hyperplanes, that
the maximal number of equal k × k minors in a k × n totally positive matrix is O(nk−

k
k+1 ).

Inequalities between products of two minors in TP matrices have been widely studied as well [Ska04,
RS05], and have close ties with Temperley-Lieb Immanants. Recently there has been also a study of
products of three minors in such matrices [Lam14], that related such products with dimers. Despite all
of the above, not much is known about the inequalities between the minors themselves. What is the
full structure of all the possible equalities and inequalities between minors in TP matrices? The only
part of this problem that has been solved discusses the structure of the minors with largest value and
smallest value [FP14], while the rest of the problem remains open. The description in [FP14] involves
rich combinatorial structure that relates arrangements of smallest minors with triangulations of the n-gon
and the notion of weakly separated sets, while the structure of largest minors was related to thrackles and
sorted collections. In this paper, we discuss the general case, and its tight relation with the triangulation
of the hypersimplex.

2 Background
For n ≥ k ≥ 0, let the Grassmannian Gr(k, n) (over R) be the manifold of k-dimensional subspaces
V ⊂ Rn. It can be identified with the space of real k×n matrices of rank k modulo row operations. Here
we assume that the subspace V associated with a k× n-matrix A is spanned by the row vectors of A. For
such a matrix A and a k-element subset I ⊂ [n] := {1, 2, 3 . . . , n}, we denote by AI the k× k-submatrix
of A in the column set I , and let ∆I(A) := det(AI). The coordinates ∆I form projective coordinates on
the Grassmannian, called the Plücker coordinates. In [Pos06], the positive (nonnegative) Grassmannian
Gr+(k, n) (Gr≥(k, n)) was defined to be the subset ofGr(k, n) whose elements are represented by k×n
matrices A with strictly positive (nonnegative) Plücker coordinates: ∆I > 0 for all I .

We recall two classical stratifications ofGr(k, n) [Pos06]. The first one is the cellular decomposition of
Gr(k, n) into a disjoint union of Schubert cells. The Grassmannian Gr(k, n) also has a subdivision into
matroid strata (or Gelfand-Serganova strata) SM labelled by matroidsM . The nonnegative Grassmannian
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can be decomposed into cells via the positroid stratification. This decomposition has been studied by
Postnikov in [Pos06] and was described in terms of various combinatorial objects such as: decorated
permutations, plabic graphs, L-diagrams, Grassmann necklaces, etc. The following stratification, which
is finer than the positroid stratification, was suggested in [FP14], along with the problem bellow:

Definition 2.1 Let U = (U0,U1, . . . ,Ul) be an ordered set-partition of the set
(
[n]
k

)
of all k-element

subsets in [n]. Let us subdivide the nonnegative Grassmannian Gr≥(k, n) into the strata SU labelled by
such ordered set partitions U and given by the conditions:

1. ∆I = 0 for I ∈ U0,

2. ∆I = ∆J if I, J ∈ Ui,

3. ∆I < ∆J if I ∈ Ui and J ∈ Uj with i < j.

An arrangement of minors is an ordered set-partition U such that the stratum SU is not empty.

Problem 2.2 Describe combinatorially all possible arrangements of minors in Gr≥(k, n). Investigate
the geometric and the combinatorial structure of the stratification Gr≥(k, n) =

⋃
SU.

Example 2.3 Let U0 = ∅, U1 =
{
{3, 4}

}
, U2 =

{
{1, 4}

}
, U3 =

{
{1, 2}, {2, 3}, {1, 3}, {2, 4}

}
.

Then U = (U0,U1,U2,U3) is an ordered set partition of
(
[4]
2

)
. Consider the matrixA =

(
1 2 1 1/3
1 3 2 1

)
.

The matrixA satisfies ∆34 = 1/3,∆14 = 2/3,∆12 = ∆23 = ∆13 = ∆24 = 1. Therefore SU is nonempty
since A ∈ SU, and hence U is an arrangement of minors.

For the case k = 1, the stratification of Gr≥(k, n) into the strata SU is equivalent to Coxeter arrangement
of type A (also known as braid arrangement). The classification of the possible options for U0 is equiv-
alent to the positroid stratification described above. In this work we deal with the positive Grammarian,
and thus restrict ourself to the case U0 = ∅. We extend the convention from [FP14]:

Definition 2.4 We say that a subset J ⊂
(
[n]
k

)
is an arrangement of tth largest (smallest) minors in

Gr+(k, n), if there exists a nonempty stratum SU such that U0 = ∅ and Ul−t+1 = J (Ut = J ).
If t = 1 we say that such arrangement is the arrangement of largest (smallest) minors.

Arrangements of largest and smallest minors were studied in [FP14], where it was shown that they enjoy a
rich combinatorial structure. Arrangements of smallest minors are related to weakly separated sets. Such
sets originally introduced by Leclerc-Zelevinsky [LZ98] in the study of quasi-commuting quantum mi-
nors, and are closely related to the associated cluster algebra of the positive Grassmannian. Arrangement
of largest minors were shown to be in bijection with simplices of Sturmfels’ triangulation of the hyper-
simplex, which also appear in the context of Gröbner bases [LP07]. In this paper, we are interested in the
combinatorial description of arrangements of tth largest minors for t ≥ 2. For a stratum SU, the structure
of Ut for t < l depends on the structure of Ul, as we will show later.

Definition 2.5 LetJ ⊂
(
[n]
k

)
be an arrangement of largest minors. We say thatY ⊂

(
[n]
k

)
is a (t,J )−largest

arrangement (t ≥ 2) if there exists a nonempty stratum SU such that U0 = ∅, Ul = J and Ul−t+1 = Y .
We say that W ∈

(
[n]
k

)
can be (t,J )−largest minor if there exists a (t,J )−largest arrangement Y

such that W ∈ Y
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In particular, if Y ⊂
(
[n]
k

)
is a (t,J )−largest arrangement, then Y is also an arrangement of tth largest

minors. For example, the first part of Example 2.3 implies that
{
{3, 4}

}
is a (3,

{
{1, 2}, {2, 3}, {1, 3}, {2, 4}

}
)−largest

arrangement, and that {1, 4} can be (2,
{
{1, 2}, {2, 3}, {1, 3}, {2, 4}

}
)−largest minor.

3 The Triangulation of the Hypersimplex
Definition 3.1 The hypersimplex ∆k,n is an (n− 1)-dimensional polytope defined as follows:

∆k,n = {(x1, . . . , xn) | 0 ≤ x1, . . . , xn ≤ 1;x1 + x2 + . . .+ xn = k}.

It was shown in [Sta77, Stu96] that the normalized volume of ∆k,n equals the Eulerian number A(n −
1, k − 1), that is, the number of permutations w of size n − 1 with exactly k − 1 descents. In [LP07]
four different constructions of a triangulation of the hypersimplex into A(n − 1, k − 1) unit simplices
are presented: Stanley’s triangulation [Sta77], Alcove triangulation, circuit triangulation and Sturmfels’
triangulation [Stu96]. It was shown in [LP07] that these four triangulations coincide. The rest of the
section is devoted to Sturmfels’ construction following the notations of [LP07].

Definition 3.2 For a multiset S of elements from [n], let Sort(S) be the non-decreasing sequence ob-
tained by ordering the elements of S. Let I, J ⊂

(
[n]
k

)
and let Sort(I ∪ J) = (a1, a2, . . . , a2k). Define

Sort1(I, J) := {a1, a3, . . . , a2k−1}, Sort2(I, J) := {a2, a4, . . . , a2k}.
A pair {I, J} is called sorted if Sort1(I, J) = I and Sort2(I, J) = J , or vise versa.

For example, {1, 3, 5}, {2, 4, 6} are sorted, while {1, 4, 5}, {2, 3, 6} are not sorted. The following Corol-
lary follows from Skandera inequalities [Ska04].

Corollary 3.3 Let I, J ∈
(
[n]
k

)
be a pair which is not sorted. Then ∆sort1(I,J) ∆sort2(I,J) > ∆I∆J for

points of the positive Grassmannian Gr+(k, n).

A collection I = {I1, I2, . . . , Ir} of elements in
(
[n]
k

)
is called sorted if Ii, Ij are sorted, for any pair

1 ≤ i < j ≤ n. Given I ∈
(
[n]
k

)
, let εI be a 0,1-vector εI = (ε1, ε2, . . . , εn) such that εi = 1 iff i ∈ I ,

and otherwise εi = 0. For a sorted collection I, we denote by ∇I the (r − 1)-dimensional simplex with
the vertices εI1 , . . . , εIr .

Theorem 3.4 [Stu96] The collection of simplices ∇I where I varies over all sorted collections of k-
element subsets in [n] , is a simplicial complex that forms a triangulation of the hypersimplex ∆k,n.

From Theorem 3.4, it follows that the maximal by inclusion sorted collections correspond to the maximal
simplices in the triangulation, and they are known to be of size n. As an example, consider the case k = 2.
Let I = {a, b}, J = {c, d} ⊂

(
[n]
2

)
be a pair of sorted sets (I 6= J). Consider the graph G of order n

whose vertices lie in clockwise order on a circle. Then we can think about I and J as edges in the graph,
and since I and J are sorted, these two edges either share a common vertex or cross each other.

Definition 3.5 A thrackle is a graph in which every pair of edges is either crossing or shares a common
vertex. (i)

The maximal number of edges in a thrackle is n, and each such maximal thrackle corresponds to a maximal
sorted set with k = 2. Figure 1 describes all the thrackles of order up to 5.

(i) Our thrackles are a special case of Conway’s thrackles. The latter are not required to have vertices arranged on a circle.
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Fig. 1: All maximal thrackles that have at most 5 vertices (up to rotations and reflections).

Definition 3.6 The dual graph Γ(k,n) of Sturmfels’ triangulation of ∆k,n is the graph whose vertices are
the maximal simplices, and two maximal simplices are adjacent by an edge if they share a common facet.

Figure 2 depicts the graph Γ(2,6). This graph has A(5, 1) = 26 vertices, each corresponds to a maximal
thrackle on 6 vertices. We also described explicitly 6 of the vertices. In particular, vertices a and b are
connected since b can be obtained from a by removing the edge {1, 6} and adding instead the edge {2, 5}.
Therefore∇a and ∇b share a common facet.
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Fig. 2: The graph Γ(2,6)

4 Arrangements of minors and Sturmfels’ triangulation
In this section, we describe necessary and sufficient conditions on arrangements of second largest minors,
and also necessary conditions for arrangements of t-th largest minors for any t ≥ 2. The case t = 1, i.e.,
arrangements of largest minors, was fully resolved in [FP14]:

Theorem 4.1 A subset of J ⊂
(
[n]
k

)
is an arrangement of largest minors in Gr+(k, n) if and only if

it is a sorted subset. Equivalently, J is an arrangement of largest minors if and only if it corresponds
to a simplex in Sturmfels’ triangulation of the hypersimplex. Maximal arrangements of largest minors
contain exactly n minors. The number of maximal arrangements of largest minors in Gr+(k, n) equals
the Eulerian number A(n− 1, k − 1).
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Theorem 4.1 implies that maximal arrangements of largest minors are in bijection with the vertices of
Γ(k,n). In this section, we will show that the structure of arrangements of second largest minors is strongly
related the structure of edges in Γ(k,n). As a warm-up, we start with the case k = 2.

4.1 The case k = 2: maximal thrackles
Consider the space Gr+(2, n), and let J ⊂

(
[n]
2

)
be a maximal arrangement of largest minors (hence it

corresponds to a maximal thrackle). Given W ∈
(
[n]
2

)
, we ask whether W can be (2,J )−largest minor.

That is, whether there exists an element in Gr+(2, n) in which the collection of largest minors is J and
W is second largest. Our theorem bellow gives necessary and sufficient conditions on such W .

Theorem 4.2 Let W ∈
(
[n]
2

)
and let J ⊂

(
[n]
2

)
be some maximal arrangement of largest minors. The

following four statements are equivalent.

1. W can be (2,J )−largest minor.

2. There exist a vertex Q in Γ(2,n) that is adjacent to J , such that W ∈ Q.

3. There exist J ∈ J such that (J \ J) ∪W is an arrangement of largest minors.

4. There exist four distinct vertices labelled a, a+ 1, b, b+ 1 mod n such that {(a, b), (a− 1, b), (b+
1, a)} ⊂ J and W = (a− 1, b+ 1).

In particular, the minors that can be second largest are in bijection with the edges of Γ(2,n) that are
connected to vertex J , and the number of such minors is at most n.

We emphasize the relation, implied by our theorem, between arrangements of second largest minors and
the structure of Γ(2,n). Let J ⊂

(
[n]
2

)
be a maximal thrackle, and let

T = {A ∈ Gr+(2, n) | the set of largest minors of A is J }.

Let W ∈
(
[n]
2

)
. Theorem 4.2(2) implies that there exists A ∈ T for which W is the second largest minor

if and only if there exists a vertex Q in Γ(2,n) that is adjacent to J such that W ∈ Q.

Example 4.3 Consider the maximal thrackle J in Figure 3 on the left. Using part (4) of Theorem 4.2, we
identify the elements in

(
[n]
2

)
that can be second largest minors, and denote them by red lines (and this is

the second graph from the left). Then, in Figure 3 on the right, we describe the thrackle resulted in adding
the red line and removing one of the edges of J . Those three cases correspond to the three edges that are
connected to J in Γ(2,5).
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4.2 The general case
In the previous section, we considered the space Gr+(2, n) and discussed arrangements of second largest
minors. In this section we consider the space Gr+(k, n), and discuss arrangements of tth largest minors
(t ≥ 2). Our discussion covers the general case (that is, we will make no assumption on the arrangements
of largest minors). We start with the case t = 2.

Theorem 4.4 Let W ∈
(
[n]
k

)
and let J ⊂

(
[n]
k

)
be some arrangement of largest minors. Denote |J | = c.

If W can be (2,J )−largest minor, then one of 1,2 holds, or equivalently, one of 3,4 holds:

1. The collection {W} ∪ J is sorted

2. There exists J ∈ J such that W and J are not sorted, and (J \ J) ∪ {W} is a sorted collection.

3. ∇{W}∪J is a c-dimensional simplex in Sturmfels triangulation of the hypersimplex ∆k,n.

4. There exists a c− 1-dimensional simplex∇Y in Sturmfels triangulation such that εW is a vertex in
∇Y , and the simplices∇Y ,∇J share a common facet.

The proof idea is to show that if there exist two elements J1, J2 ∈ J that are not sorted with W , then the
collection {J1, J2, Sort1(W,J1), Sort2(W,J1), Sort1(W,J2), Sort2(W,J2)} cannot be sorted. There-
fore, not all the elements in the collection can be in the arrangement of largest minors. From here we
can use Skandera inequalities and deduce that W cannot be second largest. The theorem above gives a
necessary condition on second largest minors. If J from Theorem 4.4 is maximal, we obtain sufficient
conditions as well. The following generalize Theorem 4.2.

Theorem 4.5 Let W ∈
(
[n]
k

)
and let J ⊂

(
[n]
k

)
be some maximal arrangement of largest minors. The

following two statements are equivalent.

1. W can be (2,J )−largest minor.

2. There exist a vertex Q in Γ(k,n) that is adjacent to J , such that W ∈ Q.

In particular, the minors that can be second largest are in bijection with the edges of Γ(k,n) that connected
to vertex J , and the number of such minors is at most n.

In one direction the proof follows from Theorem 4.4. The second direction is proven using properties of
the torus action on the positive Grassmannian. Theorem 4.5 states that when J is a maximal sorted set,
the second largest minor must appear in one of the neighbors of J in Γ(k,n). In order to discuss tth largest
minors for t > 2, we will introduce the notion of cubical distance in the graph Γ(k,n). Consider the blue
edges in Figure 2, and note that they form a square, while the red edges form a 3-dimensional cube. We
say that two vertices J1,J2 in Γ(k,n) are of cubical distance 1 if both of them lie in certain cube (of any
dimension). For example, vertices a and b from Figure 2 are of cubical distance 1 since both of them lie
in a 1-dimensional cube (which is just an edge). similarly, a and c are of cubical distance 1 (both of them
lie in a square), as well as c and d (both of them lie in a 3-dimensional cube).

Definition 4.6 Let J1,J2 ⊂
(
[n]
k

)
be maximal sorted collections, and let W ∈

(
[n]
k

)
. We say that J1,J2

are of cubical distance D, and denote it by cubed(J1,J2) = D, if one can arrive from J1 to J2 by
moving along D cubes in Γ(k,n), and D is minimal with respect to this property. We say that W is of
cubical distance D from J1, and denote it by cubed(J1,W ) = D, if for any vertex J2 in Γ(k,n) that
contains W , cubed(J1,J2) ≥ D, and for at least one such J2 this inequality becomes equality.
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For example, using the notations of Figure 2, cubed(a, d) = 2, cubed(b, d) = 2, cubed(a, e) = 3. We also
have cubed(a, {1, 4}) = 1 since {1, 4} ∈ f , and cubed(a, {2, 4}) = 2 since {2, 4} /∈ b, f, c, {2, 4} ∈ d.
It can also be shown that cubed(a, {2, 3}) = 3.

Definition 4.7 Let J ⊂
(
[n]
k

)
be an arrangement of largest minors, and let W ∈

(
[n]
k

)
. We say that W is

(≥ t,J )−largest minor if for any arrangement of minors U = (U0,U1, . . . ,Ul) such that Ul = J the
following holds: W /∈ Ul,Ul−1, . . . ,Ul−t+2.

For example, let J be the maximal sorted collection that corresponds to vertex a in Figure 2, and let
A ∈ Gr+(2, 6) in which the collection of maximal minors is J . Using Skandera’s inequalities, it is
possible to show that for such A, ∆16 > ∆14 > ∆24 > ∆23. Therefore, {2, 3} is (≥ 4,Ul)−largest
minor, since {2, 3} /∈ Ul,Ul−1,Ul−2

Conjecture 4.8 Let W ∈
(
[n]
k

)
and let J ⊂

(
[n]
k

)
be some maximal arrangement of largest minors. If

cubed(W,J ) = t, then W is (≥ t+ 1,Ul)−largest minor.

Note that the examples we gave earlier are special cases of this conjecture. For example, cubed(a, {2, 3}) =
3, and indeed {2, 3} is (≥ 4,Ul)−largest minor.

Theorem 4.9 Conjecture 4.8 holds for t = 2, 3 (and any n ,k), and also for k = 2 (and any n, t).

At first glance, it may seem like Theorem 4.9 contradicts Theorem 4.5 since a vertexJ2 of cubical distance
1 from J doesn’t have to be connected to J . However, it can be shown that if W ∈ J2 then W also
appears in one of the neighbors of J . In the next section, we will prove additional cases of the conjecture.
Conjecture 4.8 deals with the case in which J is maximal. We will now discuss general case, in which J
can be any sorted collection. Theorem 4.4 implies that if W ∈

(
[n]
k

)
is a second largest minor, then εW

is ”close” to ∇J . This notion of distance is formally defined in the following definition. This definition
allows us to generalize this property for arrangements of tth largest minors (t ≥ 2)

Definition 4.10 Let r be an integer, 1 ≤ i ≤ j ≤ n, and denote by Hi,j,r the affine hyperplane {xi +
xi+1 · · ·+ xj = r} ⊂ Rn. Fix a point x ∈ Rn. For y ∈ Rn, we say that Hi,j,r separates y from x if one
of the following holds:

• x and y lie in the two disjoint halfspaces formed by Hi,j,r.

• y lies on Hi,j,r and x does not.

Define dij(x, y) = |{r| the hyperplane Hi,j,r separates y from x}|.
Finally, let Br(x) = {y | dij(x, y) ≤ r for all 1 ≤ i ≤ j ≤ n}.
The notion dij arises naturally in the discussion of sorted sets. In particular, by [LP07, section 2.4], I and
J are sorted if and only if dij(εI , εJ) ≤ 1 for every 1 ≤ i ≤ j ≤ n.

Theorem 4.11 Let J ⊂
(
[n]
k

)
be some arrangement of largest minors, and let Y be a (t,J )−largest

arrangement. Then the following holds:

• If t = 2, then εY ∈ B2(J) for any Y ∈ Y, J ∈ J .

• If t ≥ 3, then εY ∈ B2+2t−3(J) for any Y ∈ Y, J ∈ J .

Thus, we get that if W can be (t,J )−largest minor, then W must lie within a ball of certain bounded
radius around J . We conclude this section with the following corollary.
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Corollary 4.12 Let Y be an arrangement of tth largest minor, t ≥ 2. Then all the elements εY , Y ∈ Y
lie within a ball of radius 2 + 2t−3.

5 Circuit triangulation and partially ordered set of minors
In this section, we show that arrangements of largest minors induces a structure of partially ordered set on
the entire collection of minors. We investigate this poset, and its relations to arrangements of minors.

Example 5.1 Let k = 2, n = 6, and let A ∈ Gr+(2, 6) be an element for which the minors that appear
in Figure 4 on the left are maximal. Thus, without loss of generality, we can assume that

∆12 = ∆13 = ∆14 = ∆15 = ∆25 = ∆26 = 1.

1

2

34

5

6

{12,13,14,15,25,26}

{16}{24}

{35}{46}

{56} {45} {34}

{23}

{36}

Fig. 4: A maximal thrackle and the corresponding poset of minors

By Theorem 4.1, all the other minors are strictly smaller than 1. However, there is much more informa-
tion that we can obtain on the order of the minors. For example, using 3-term Plücker relation, we get
∆46∆13 < ∆14∆36, and hence ∆46 < ∆36. Once the set of largest minors is fixed, it induces a structure
of partially ordered set on the collection of minors. Figure 4 depicts the Hasse diagram that corresponds
to the example above (and the relation ∆46 < ∆36 is one of the covering relations in this diagram).

In order to discuss these partially ordered set more systematically, we will use the circuit triangulation of
the hypersimplex. It was introduces in [LP07], and was shown to be isomorphic to Sturmfels triangulation.

Definition 5.2 We define Gk,n to be the directed graph whose vertices are {εI}I∈([n]
k ), and two vertices

ε = (ε1, ε2, . . . , εn) and ε′ are connected by an edge oriented from ε to ε′ if there exists some i ∈ [n]
such that (εi, εi+1) = (1, 0) and the vector ε′ is obtained from ε by switching εi, εi+1 (and leaving all the
other coordinates unchanged, so the 1 is “shifted” one place to the right). We label such edge by i. When
considering i ∈ [n] we refer to i as i mod n, and thus if i = n, we have i+ 1 = 1.

A circuit in Gk,n of minimal possible length must be of length n. The left part of Figure 5 is an example
of a minimal circuit in G3,8. For convenience, we label the vertices by I instead of εI . The sequence of
labels of edges in a minimal circuit forms a permutation ω = ω1ω2 . . . ωn ∈ Sn, and two permutations that
obtained from each other by cyclic shifts correspond to the same circuit. Thus, we can label each minimal
circuit in Gk,n by its permutation modulo cyclic shifts. For example, the permutation corresponding to
the minimal circuit in Figure 5 is ω = 56178243, and we label this circuit by Cω .
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Theorem 5.3 [LP07] Each minimal circuit Cω in Gk,n determines the simplex ∆w inside the hypersim-
plex ∆k,n with the vertex set Cω . The collection of simplices ∆ω corresponding to all minimal circuits in
Gk,n forms a triangulation of the hypersimplex, which is called the circuit triangulation. The vertices of
Cω form a maximal sorted collection, and every maximal sorted collection can be realized via a minimal
circuit in the graph Gk,n.

The structure of Gk,n is quite complicated in general. Yet, we found an algorithm that recognizes certain
planar subgraphs of Gk,n - these subgraphs induce a structure of partial order on the set of minors.

Definition 5.4 An oriented Young graph is the graph that is obtained from a Young diagram after orient-
ing each horizontal edge from right to left and each vertical edge from top to bottom. We call the vertex
that is in the upper left corner the origin vertex, and denote the upper right (lower left) vertex by v0 (v1).
There are two paths that start at v0, walk along the border end at v1. The path that passes through the
origin vertex is called inner path, and the second path is called outer path. From now on, we denote the
set of the vertices appear in the outer path by V . See the right part of Figure 5 for example.

1

2

34

567

2’3’4’

5’

6’

7’

u v0

v1

1’

8’

8

1,4,6

1,4,7

2,4,7

2,4,81,4,61,2,4

1,4,61,3,4

1,4,61,3,5

1,4,5
6

1

7

8

2

4

3

5

I

J

Z

Fig. 5: The figure on the left is a circuit in G3,8. The right figure is an oriented Young graph. It’s inner
boundary path formed by the edges labeled from 1’ through 8’. Its outer boundary path formed by the
edges labeled from 1 through 8, and all the vertices that appear along the latter path form the collection V.

Lemma 5.5 Let H be an oriented Young subgraph of Gk,n, and let A ∈ Gr+(k, n) for which all the
minors indexed by V are equal and have largest value. Then for any vertex I of H such that I /∈ V , we
have ∆I < ∆J , ∆I < ∆Z where J is the vertex right bellow I and Z is the vertex to the right of I in H
(see Figure 5).

Definition 5.6 LetH be an oriented Young subgraph ofGk,n, and let u be the origin vertex. The swapping
distance between u and V is max{i+ j − 1|(i, j) ∈ H}.

For example, the swapping distance of u from V in Figure 5 is 5.

Corollary 5.7 Let H,V, u be as in Lemma 5.5, and denote by t the swapping distance of u from V . Let
Ul ⊂

(
[n]
k

)
such that V ⊂ Ul. Then u is (≥ t+ 1,Ul)−largest minor.

Lemma 5.8 Let J ⊂
(
[n]
k

)
be a maximal sorted collection, and suppose that there exists an oriented

Young subgraph H of Gk,n such that V ⊂ J . Let u be the origin vertex in H . Then cubed(J , u) is
bounded from above by the swapping distance of u from V .

Theorem 5.9 If W is sorted with at least one element in J , then the claim in Conjecture 4.8 holds.
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Fig. 6

The proof idea of Theorem 5.9 is that under the conditions of the theorem, one can find an oriented Young
subgraph of Gk,n such that W is the origin vertex and V ⊂ J . Then we apply Lemma 5.5. The existence
of such subgraph not only implies Theorem 5.9, but also induces a poset on the collection of minors, as
each minor in the Young subgraph (that is not in J ) is smaller than the minor to the right of it and the
minor bellow it. Let us show an example. Suppose that the minors corresponding to the circuit Cω in
Figure 5 form a collection J of largest minors, and let W = (3, 5, 6). Among the vertices of Cω , W is
sorted with {1, 3, 5}, {1, 4, 5}, {1, 4, 6}, and not sorted with the rest. So the set of vertices that are not
sorted with W form a path in Cω , and this property also holds in the general case. We would like to
construct an alternative path inG3,8 that starts at {1, 4, 6}, ends at {1, 3, 5} and contains only vertices that
are sorted with W . Consider the left graph G1 that appears in Figure 6. G1 is a subgraph of the graph
G3,8, and the edges that correspond to the circuitCω appear as dotted lines. The part of ω that corresponds
to the dotted lines is 617824 (we ignore the vertex {1, 4, 5}, as it is sorted with W ). Let us instead start
at {1, 4, 6} and walk along the path 124678. Note that after 3 steps in this path, we arrive to the vertex
W . The bottom right graph in Figure 6 is the oriented Young subgraph (in the figure it appears rotated) of
G3,8 in which the set V is consisted of vertices from Cω and W is the origin vertex. One can check that
this is indeed a subgraph of G1. Similar claim holds in the case W = (2, 5, 6), with the corresponding
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oriented Young subgraph which appears in the top right part of the figure.
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