The Bruhat order on conjugation-invariant sets of involutions in the symmetric group

Mikael Hansson ${ }^{\dagger}$
Department of Mathematics, Linköping University, Sweden

Abstract

Let I_{n} be the set of involutions in the symmetric group S_{n}, and for $A \subseteq\{0,1, \ldots, n\}$, let $$
F_{n}^{A}=\left\{\sigma \in I_{n} \mid \sigma \text { has } a \text { fixed points for some } a \in A\right\}
$$

We give a complete characterisation of the sets A for which F_{n}^{A}, with the order induced by the Bruhat order on S_{n}, is a graded poset. In particular, we prove that $F_{n}^{\{1\}}$ (i.e., the set of involutions with exactly one fixed point) is graded, which settles a conjecture of Hultman in the affirmative. When F_{n}^{A} is graded, we give its rank function. We also give a short new proof of the EL-shellability of $F_{n}^{\{0\}}$ (i.e., the set of fixed point-free involutions), which was recently proved by Can, Cherniavsky, and Twelbeck.

Résumé. Soit I_{n} l'ensemble d'involutions dans le groupe symétrique S_{n}, et pour $A \subseteq\{0,1, \ldots, n\}$, soit

$$
F_{n}^{A}=\left\{\sigma \in I_{n} \mid \sigma \text { a } a \text { points fixes pour quelque } a \in A\right\} .
$$

Nous caractérisons tous les ensembles A dont les F_{n}^{A}, avec l'ordre induit par l'ordre de Bruhat sur S_{n}, est un poset gradué. En particulier, nous démontrons que $F_{n}^{\{1\}}$ (c'est-à-dire, l'ensemble d'involutions avec précis en point fixe) est gradué, ce qui résout une conjecture d'Hultman à l'affirmative. Lorsque F_{n}^{A} est gradué, nous donnons sa fonction de rang. En plus, nous donnons une nouvelle démonstration courte l'EL-shellability de $F_{n}^{\{0\}}$ (c'est-à̀-dire, l'ensemble d'involutions sans points fixes), établie récemment par Can, Cherniavsky et Twelbeck.

Keywords: Bruhat order, symmetric group, involution, conjugacy class, graded poset, EL-shellability

1 Introduction

Partially ordered by the Bruhat order, the symmetric group S_{n} is a graded poset whose rank function is given by the number of inversions, and Edelman [4] proved that it is EL-shellable. Richardson and Springer [10] proved that the set I_{n} of involutions in S_{n} and the set F_{n}^{0} of fixed point-free involutions are graded. Incitti [9] proved that the rank function of I_{n} can be expressed as the average of the number of inversions and the number of exceedances, and that I_{n} is EL-shellable. Hultman [8] studied (in a more general setting, which we shall describe shortly) F_{n}^{0} and F_{n}^{1}, the set of involutions with exactly one

[^0]fixed point. It follows that F_{n}^{0} is graded and Hultman conjectured that the same is true for F_{n}^{1}. Can, Cherniavsky, and Twelbeck [3] recently proved that F_{n}^{0} is EL-shellable.

We consider the following generalisation. For $a \in\{0,1, \ldots, n\}$, let F_{n}^{a} be the conjugacy class in S_{n} consisting of the involutions with a fixed points, and for $A \subseteq\{0,1, \ldots, n\}$, let

$$
F_{n}^{A}=\bigcup_{a \in A} F_{n}^{a}
$$

Both I_{n} and F_{n}^{A} are regarded as posets with the order induced by the Bruhat order on S_{n}. Note that

$$
F_{n}^{A}=\left\{\sigma \in I_{n} \mid \sigma \text { has } a \text { fixed points for some } a \in A\right\}
$$

Also note that for all elements in I_{n}, the number of fixed points is congruent to n modulo 2. Hence, we may assume that all members of A have the same parity as n.

Depicted in Figures 1 and 2 are the Hasse diagrams of I_{4}, F_{4}^{0}, and F_{4}^{2}.

Figure 1: Hasse diagram of I_{4} with the involutions with zero ($($), two (\bullet), and four (\diamond) fixed points indicated.

Figure 2: Hasse diagrams of F_{4}^{0} (left) and F_{4}^{2} (right).
Our main result is a complete characterisation of the sets A for which F_{n}^{A} is graded. In particular, we prove that F_{n}^{1} is graded.

Informally, F_{n}^{A} is graded precisely when $A-\{n\}$ is empty or an "interval," which may consist of a single element if it is 0,1 , or $n-2$. The following theorem, which is our main result, makes the above precise. It also gives the rank function of F_{n}^{A} when it exists.

Theorem 1 The poset F_{n}^{A} is graded if and only if $A-\{n\}=\emptyset$ or $A-\{n\}=\left\{a_{1}, a_{1}+2, \ldots, a_{2}\right\}$ with $a_{1} \in\{0,1\}, a_{2}=n-2$, or $a_{2}-a_{1} \geq 2$. Furthermore, when F_{n}^{A} is graded, its rank function ρ is given by

$$
\rho(\sigma)=\frac{\operatorname{inv}(\sigma)+\operatorname{exc}(\sigma)-n+\tilde{a}}{2}+ \begin{cases}1 & \text { if } n \in A \\ 0 & \text { otherwise }\end{cases}
$$

where $\operatorname{inv}(\sigma)$ and $\operatorname{exc}(\sigma)$ denote the number of inversions and exceedances, respectively, of σ, and $\tilde{a}=$ $\max (A-\{n\})$. In particular, F_{n}^{A} has rank

$$
\rho\left(F_{n}^{A}\right)=\frac{n^{2}-a^{2}-2 n+2 \tilde{a}}{4}+ \begin{cases}1 & \text { if } n \in A \\ 0 & \text { otherwise }\end{cases}
$$

where $a=\min A$.
The following result is direct consequence of Theorem 1 .
Corollary 2 The posets $F_{n}^{0}, F_{n}^{1}, F_{n}^{n-2}$, and F_{n}^{n} are the only graded conjugacy classes of involutions in S_{n}. Furthermore, the rank function ρ of F_{n}^{0} and F_{n}^{1} is given by

$$
\rho(\sigma)=\frac{\operatorname{inv}(\sigma)-\lfloor n / 2\rfloor}{2}
$$

and the rank function ρ of F_{n}^{n-2} is given by

$$
\rho(\sigma)=\frac{\operatorname{inv}(\sigma)-1}{2} .
$$

It is well known that F_{n}^{n-2} is graded (in fact, it coincides with the root poset of the Weyl group $A_{n-1} \cong$ S_{n}). As was mentioned above, the gradedness of F_{n}^{0} was proved by Richardson and Springer, and that of F_{n}^{1} was conjectured by Hultman. These two posets are special cases of a more general construction from Hultman's paper [8], which we now describe ${ }^{(\mathrm{i})}$

Given a finitely generated Coxeter system (W, S) and an involutive automorphism θ of (W, S) (i.e., a group automorphism θ of W such that $\theta(S)=S$ and $\theta^{2}=\mathrm{id}$), let

$$
\iota(\theta)=\left\{\theta\left(w^{-1}\right) w \mid w \in W\right\}
$$

and

$$
\mathfrak{I}(\theta)=\left\{w \in W \mid \theta(w)=w^{-1}\right\}
$$

be the sets of twisted identities and twisted involutions, respectively. Clearly, $\iota(\theta) \subseteq \Im(\theta) \subseteq W$. Note that when $\theta=\mathrm{id}, \iota(\theta)$ and $\mathfrak{I}(\theta)$ reduce to the sets of the (ordinary) identity and (ordinary) involutions in W. Each subset of W is regarded as a poset with the order induced by the Bruhat order on W. When W is the symmetric group S_{n}, there is a unique non-trivial automorphism of (W, S), mapping $s_{i}=(i, i+1)$ to s_{n-i}.

[^1]We say that θ has the no odd flip property if the order of $s \theta(s)$ is even or infinite for all $s \in S$ with $s \neq \theta(s)$. If W is finite and irreducible, then θ has the no odd flip property, unless W is of type $A_{2 n} \cong S_{2 n+1}$ or $I_{2}(2 n+1)$ for some $n \geq 1$, and θ is the unique non-trivial automorphism. The poset $\mathfrak{I}(\theta)$ is always graded. Furthermore, we have the following result, from which it follows that F_{n}^{0} is graded, as we shall see.

Theorem A ([8, Theorem 4.6 and Proposition 6.7]) If θ has the no odd flip property, then $\iota(\theta)$ is graded with the same rank function as $\mathfrak{I}(\theta)$.

If W is finite, it contains a greatest element w_{0}, and $\theta(w)=w_{0} w w_{0}$ defines an involutive automorphism of (W, S). Since $\iota(\theta)=\left\{w_{0} w^{-1} w_{0} w \mid w \in W\right\}$ and $\mathfrak{I}(\theta)=\left\{w \in W \mid w_{0} w w_{0}=w^{-1}\right\}$,

$$
w_{0} \cdot \iota(\theta)=\left\{w^{-1} w_{0} w \mid w \in W\right\}
$$

and

$$
w_{0} \cdot \mathfrak{I}(\theta)=\left\{w_{0} w \mid w_{0} w w_{0}=w^{-1}\right\}=\left\{w_{0} w \mid\left(w_{0} w\right)^{2}=e\right\}
$$

Since left (as well as right) multiplication by w_{0} is a poset anti-automorphism (i.e., an order-reversing bijection whose inverse is order-reversing), $\iota(\theta)$ is isomorphic to the dual of $\left[w_{0}\right]$, where $\left[w_{0}\right]$ is the conjugacy class of w_{0}, and $\mathfrak{I}(\theta)$ is isomorphic to the dual of $I(W)$, where $I(W)$ is the set of involutions in W.

When W is the symmetric group S_{n}, this θ is the unique non-trivial automorphism of (W, S), and $I(W)=I_{n}$. For n even, $\left[w_{0}\right]=F_{n}^{0}$, and for n odd, $\left[w_{0}\right]=F_{n}^{1}$. Thus, it follows from Theorem A that F_{n}^{0} is graded.

It was conjectured by Hultman [8, Conjecture 6.1] that $\iota(\theta)$ is graded when $W=A_{2 n}$. As we have seen, this is equivalent to F_{n}^{1} being graded, which is the case (see Corollary 22. Since $\iota(\theta)$ is graded whenever W is dihedral, as is easily seen, it therefore follows that $\iota(\theta)$ is graded whenever W is finite and irreducible. From this, we get the following (we omit the proof):
Theorem 3 If W is finite, then $\iota(\theta)$ is graded.
Let us also mention a connection to work by Richardson and Springer [10, 11], who studied a graded poset V of orbits of certain symmetric varieties (depending on, inter alia, a group G). They did so by defining an order-preserving function $\varphi: V \rightarrow \mathfrak{I}(\theta) \subseteq W$ (where the Weyl group W depends on, inter alia, G).

When $W=S_{n}, \Im(\theta)$ is the image of an injective φ (for details, see [10, Example 10.2]). When n is even, the same is true for $\iota(\theta)$ (see [10, Example 10.4] or [8, Example 3.1]). Thus, I_{n} and F_{n}^{0} are isomorphic to the duals of such posets V. Hence, I_{n} and F_{n}^{0} are graded.

However, these are not the only F_{n}^{A} that occur as the image of a φ. To describe these sets, and for later purposes, define

$$
F_{n}^{\leq a}=\bigcup_{i \geq 0} F_{n}^{a-2 i} \quad \text { and } \quad F_{n}^{\geq a}=\bigcup_{i \geq 0} F_{n}^{a+2 i}
$$

and for $a_{2}=a_{1}+2 m$, where m is a positive integer, let

$$
F_{n}^{a_{1}: a_{2}}=F_{n}^{\geq a_{1}} \cap F_{n}^{\leq a_{2}}
$$

As described in [10], the image of φ can be read off from the corresponding Satake diagram. It follows from Satake diagrams A III and A IV in Helgason [5, Table VI] that for each $a \leq n-2, F_{n}^{\geq a}$ is the image of a φ. (From Satake diagrams A I and A II, it follows that $\Im(\theta)$ and $\iota(\theta)$, respectively, are the images of such functions).

The remainder of this extended abstract is organised as follows. In Section 2, we agree on notation and gather the necessary definitions and previous results. Then, in Section 3, we sketch the proof of our main result (Theorem 1). Finally, in Section 4, we give a short new proof of the following result, which was recently proved by Can, Cherniavsky, and Twelbeck.

Theorem B ([3, Theorem 1]) The poset F_{n}^{0} is EL-shellable.

2 Notation and preliminaries

Poset notation and terminology will follow [12]. In particular, if P is a poset and $x \leq y$ in P, then $[x, y]=\{z \in P \mid x \leq z \leq y\}$ and $(x, y)=\{z \in P \mid x<z<y\}$. Furthermore, in a finite poset P, \triangleleft denotes the covering relation, a chain $x_{0}<x_{1}<\cdots<x_{k}$ is saturated if $x_{i-1} \triangleleft x_{i}$ for all $i \in[k], P$ is bounded if it has a minimum (denoted by $\hat{0}$) and a maximum (denoted by $\hat{1}$), and P is graded of rank n if every maximal chain has length n. In this case, there is a unique rank function $\rho: P \rightarrow\{0,1, \ldots, n\}$ such that $\rho(x)=0$ if x is a minimal element of P, and $\rho(y)=\rho(x)+1$ if $x \triangleleft y$ in $P ; x$ has rank i if $\rho(x)=i$. An $x-y$-chain is a saturated chain from x to y.

Let P be a finite, bounded, and graded poset. An edge-labelling of P is a function $\lambda:\left\{(x, y) \in P^{2} \mid\right.$ $x \triangleleft y\} \rightarrow Q$, where Q is a totally ordered set. If λ is an edge-labelling of P and $x_{0} \triangleleft x_{1} \triangleleft \cdots \triangleleft x_{k}$ is a saturated chain, let $\lambda\left(x_{0}, x_{1}, \ldots, x_{k}\right)=\left(\lambda\left(x_{0}, x_{1}\right), \lambda\left(x_{1}, x_{2}\right), \ldots, \lambda\left(x_{k-1}, x_{k}\right)\right)$. The chain is said to be increasing if $\lambda\left(x_{i-1}, x_{i}\right) \leq \lambda\left(x_{i}, x_{i+1}\right)$ for all $i \in[k-1]$, and decreasing if $\lambda\left(x_{i-1}, x_{i}\right)>\lambda\left(x_{i}, x_{i+1}\right)$ for all $i \in[k-1]$. An edge-labelling λ of P is an EL-labelling if, for all $x<y$ in P, there is exactly one increasing x - y-chain, say $x_{0} \triangleleft x_{1} \triangleleft \cdots \triangleleft x_{k}$, and this chain is lexicographically minimal, or lex-minimal, among the x - y-chains in P (i.e., if $y_{0} \triangleleft y_{1} \triangleleft \cdots \triangleleft y_{k}$ is any other x - y-chain, then $\lambda\left(x_{j-1}, x_{j}\right)<\lambda\left(y_{j-1}, y_{j}\right)$, where $j=\min \left\{i \in[k] \mid \lambda\left(x_{i-1}, x_{i}\right) \neq \lambda\left(y_{i-1}, y_{i}\right)\right\}$; this is known as the lexicographic order). If P has an EL-labelling, P is said to be EL-shellable. The reason for this is the following result, due to Björner.

Theorem C ([1, Theorem 2.3]) Let P be a finite, bounded, and graded poset. If P is EL-shellable, then its order complex $\Delta(P)$ is shellable.

For $\sigma \in S_{n}$ and $(k, l) \in[n]^{2}$, let $\sigma[k, l]=|\{i \leq k \mid \sigma(i) \geq l\}|$. The Bruhat order on S_{n} may be defined as follows (see, e.g., [2, Theorem 2.1.5]):

Definition 4 Let $\sigma, \tau \in S_{n}$. Then $\sigma \leq \tau$ if and only if $\sigma[k, l] \leq \tau[k, l]$ for all $(k, l) \in[n]^{2}$.
Let us turn to involutions in the symmetric group. Here, notation will follow [9].
Let $\sigma \in S_{n}$. A rise of σ is a pair $(i, j) \in[n]^{2}$ such that $i<j$ and $\sigma(i)<\sigma(j)$. A rise (i, j) is called free if there is no $i<k<j$ such that $\sigma(i)<\sigma(k)<\sigma(j)$. An inversion is a pair $(i, j) \in[n]^{2}$ such that $i<j$ and $\sigma(i)>\sigma(j)$. An element $i \in[n]$ is a fixed point of σ if $\sigma(i)=i$, an exceedance if $\sigma(i)>i$, and a deficiency if $\sigma(i)<i$. Let $\operatorname{inv}(\sigma)$ and $\operatorname{exc}(\sigma)$ denote the number of inversions and exceedances, respectively, of σ.

Let $\sigma \in I_{n}$. A free rise (i, j) of σ is suitable if it is an $f f$-rise (Type 1), an $f e$-rise (Type 2), an $e f$-rise (Type 3), a non-crossing $e e$-rise (Type 4), a crossing $e e$-rise (Type 5), or an $e d$-rise (Type 6). Here $f e$, e.g., means that i is a fixed point of σ while j is an exceedance, and an ee-rise is crossing if $\sigma(i)<j$ and non-crossing otherwise.

The following definition is very important.
Definition 5 Let $\sigma \in I_{n}$ and let (i, j) be a suitable rise of σ. We define a new involution $\mathrm{ct}_{(i, j)}(\sigma)$ as follows:

$$
\begin{aligned}
& \text { If }(i, j) \text { is of Type 1, then } \mathrm{ct}_{(i, j)}(\sigma)=\sigma(i, j) \\
& \text { If }(i, j) \text { is of Type 2, then } \mathrm{ct}_{(i, j)}(\sigma)=\sigma(i, j, \sigma(j)) \text {. } \\
& \text { If }(i, j) \text { is of Type 3, then } \mathrm{ct}_{(i, j)}(\sigma)=\sigma(i, j, \sigma(i)) \\
& \text { If }(i, j) \text { is of Type 4, then } \mathrm{ct}_{(i, j)}(\sigma)=\sigma(i, j)(\sigma(i), \sigma(j)) \text {. } \\
& \text { If }(i, j) \text { is of Type 5, then } \mathrm{ct}_{(i, j)}(\sigma)=\sigma(i, j, \sigma(j), \sigma(i)) \text {. } \\
& \text { If }(i, j) \text { is of Type 6, then } \mathrm{ct}_{(i, j)}(\sigma)=\sigma(i, j)(\sigma(i), \sigma(j)) \text {. }
\end{aligned}
$$

See [9] Table 1] for pictures describing the action of $\mathrm{ct}_{(i, j)}$ on the diagram of σ.
Incitti characterised the covering relation in I_{n} as follows.
Lemma 6 ([9, Theorem 5.1]) Let $\sigma, \tau \in I_{n}$. Then $\sigma \triangleleft \tau$ in I_{n} if and only if $\tau=\operatorname{ct}_{(i, j)}(\sigma)$ for some (necessarily unique) suitable rise (i, j) of σ.

If $\tau=\operatorname{ct}_{(i, j)}(\sigma)$ for some suitable rise (i, j) of σ, let $\lambda(\sigma, \tau)=(i, j)$. By Lemma 6 this defines an edge-labelling of I_{n} (with $\left\{(i, j) \in[n]^{2} \mid i<j\right\}$ totally ordered by the lexicographic order, i.e., $\left(i_{1}, j_{1}\right)<\left(i_{2}, j_{2}\right)$ if and only if $i_{1}<i_{2}$, or $i_{1}=i_{2}$ and $\left.j_{1}<j_{2}\right)$. Whenever we consider an edge-labelling of I_{n}, it is this one. If $\lambda(\sigma, \tau)=(i, j)$, then (i, j) is the label on the cover $\sigma \triangleleft \tau ;(i, j)$ is a label on a chain if it is the label on some cover of the chain.

Let $\tau \in I_{n}$ and let (i, j) be an inversion of τ. If (i, j) is a suitable rise of some $\sigma \in I_{n}$ and $\mathrm{ct}_{(i, j)}(\sigma)=$ τ, then σ is unique, and we write $\sigma=\operatorname{ict}_{(i, j)}(\tau)$.

For $\sigma<\tau$ in I_{n}, let $\operatorname{di}(\sigma, \tau)=\min \{i \in[n] \mid \sigma(i) \neq \tau(i)\}$.
We shall need the following results, due to Incitti:
Lemma 7 ([9, Theorem 5.2]) The poset I_{n} is graded with rank function ρ given by

$$
\rho(\sigma)=\frac{\operatorname{inv}(\sigma)+\operatorname{exc}(\sigma)}{2}
$$

Lemma 8 ([9, Theorem 6.2]) Let $\sigma<\tau$ in I_{n}. Then there is exactly one increasing σ - τ-chain, and it is lex-minimal.

Lemma 9 ([9, Theorem 7.3]) Let $\sigma<\tau$ in I_{n}. Then there is exactly one decreasing σ - τ-chain.
Remark 1 Since $\operatorname{ct}_{(i, j)}(\sigma)(i)>\operatorname{ct}_{(i, j)}(\sigma)(j)$, there is also exactly one "weakly" decreasing σ - τ-chain. This fact is used in Section 4

3 Sketch of the proof of the main result

In this section, we prove, sketch the proofs of, or simply state, a number of lemmas and propositions, from which Theorem 1 easily follows.

The strategy for proving that a poset F_{n}^{A} is graded is as follows. We first prove that F_{n}^{A} has a maximum and that all its minimal elements have the same rank in I_{n} (see Propositions 11 and 12). We then prove that if $\sigma, \tau \in F_{n}^{A}$, then $\sigma \triangleleft \tau$ in F_{n}^{A} if and only if $\sigma \triangleleft \tau$ in I_{n} (one implication is obvious). This is done in Lemmas 15,16 , and 17 . Since I_{n} is graded, it thus follows that F_{n}^{A} is graded.

In particular, when $F_{n}^{A} \in\left\{F_{n}^{\leq a}, F_{n}^{\geq a}\right\}$, to prove that $\sigma \triangleleft \tau$ in I_{n} if $\sigma \triangleleft \tau$ in F_{n}^{A}, we assume that $\sigma \nrightarrow \tau$ in I_{n}, and consider the increasing and the decreasing $\sigma-\tau$-chains in I_{n}. We then prove that either the element in the increasing chain that covers σ, or the element in the decreasing chain that is covered by τ, has to belong to F_{n}^{A}. This contradicts the fact that $\sigma \triangleleft \tau$ in F_{n}^{A}.

To prove that a poset F_{n}^{A} is not graded, we consider an interval $[\sigma, \tau]$, and then construct two $\sigma-\tau$-chains in F_{n}^{A} of different lengths (see Propositions 19 and 20 .

Let us first note the following fact:
Lemma 10 For all n and all A, F_{n}^{A} is graded if and only if $F_{n}^{A-\{n\}}$ is graded.
Proof: This is obvious if $n \notin A$. Otherwise, deleting the identity permutation gives a bijection between maximal chains in F_{n}^{A} of length k and maximal chains in $F_{n}^{A-\{n\}}$ of length $k-1$.

In the next two results, we describe the maximal and minimal elements of F_{n}^{A}. The proofs are not given here.
Proposition 11 For all n and all A, F_{n}^{A} has a $\hat{1}$. Furthermore, $\operatorname{inv}(\hat{1})=\frac{n-a}{2}(n+a-1)$ and $\operatorname{exc}(\hat{1})=$ $\frac{n-a}{2}$, where $a=\min A$.
Proposition 12 For all n and all A, all minimal elements of F_{n}^{A} have $\operatorname{rank}(n-\max A) / 2$ in I_{n}.
Recall that

$$
F_{n}^{\leq a}=\bigcup_{i \geq 0} F_{n}^{a-2 i}, \quad F_{n}^{\geq a}=\bigcup_{i \geq 0} F_{n}^{a+2 i}, \quad \text { and } \quad F_{n}^{a_{1}: a_{2}}=F_{n}^{\geq a_{1}} \cap F_{n}^{\leq a_{2}}
$$

where $a_{2}=a_{1}+2 m$ for some positive integer m. Note that $F_{n}^{a_{1}: a_{2}}$ is not defined for $a_{1}=a_{2}$.
The following lemma will eventually allow us to conclude that $F_{n}^{\leq a}, F_{n}^{\geq a}$, and $F_{n}^{a_{1}: a_{2}}$ are graded.
Lemma 13 If every cover in F_{n}^{A} is a cover in I_{n}, then F_{n}^{A} is graded.
Proof: This follows from Lemma 7 and Propositions 11 and 12
The next lemma is used in the proofs of Lemmas 15, 16, and 17, which, together with Lemma 13, show that $F_{n}^{\leq a}, F_{n}^{\geq a}$, and $F_{n}^{a_{1}: a_{2}}$ are graded.

Lemma 14 Let $\sigma<\tau$ in I_{n}. Then the label (i, j) on any cover in $[\sigma, \tau]$ satisfies $i \geq \operatorname{di}(\sigma, \tau)$.
Proof: Suppose $i<\operatorname{di}(\sigma, \tau)$ for the label (i, j) on $\sigma \triangleleft \pi \leq \tau$. Then $\pi(k)=\tau(k)$ for $k<i$ and $\sigma(i)=\tau(i)$. However, it follows from Definition5that $\pi(i)>\sigma(i)$. Hence, $\pi[i, \sigma(i)+1]>\tau[i, \sigma(i)+1]$. By Definition 4, this contradicts the fact that $\pi \leq \tau$. Thus $i \geq \operatorname{di}(\sigma, \tau)$. The result follows by induction.

Lemma 15 Let $\sigma \triangleleft \tau$ in $F_{n}^{\leq a}$. Then $\sigma \triangleleft \tau$ in I_{n}.
Proof: Assume that $\sigma \nless \tau$ in I_{n}, and let $C_{I}=\sigma \triangleleft \sigma_{1} \triangleleft \cdots \triangleleft \sigma_{k} \triangleleft \tau$ be the increasing σ - τ-chain in I_{n} and $C_{D}=\sigma \triangleleft \tau_{k} \triangleleft \cdots \triangleleft \tau_{1} \triangleleft \tau$ the decreasing $\sigma-\tau$-chain in I_{n}. Since $\sigma \triangleleft \tau$ in $F_{n}^{\leq a}$, neither σ_{1} nor τ_{1} belongs to $F_{n}^{\leq a}$.
Let $h=\operatorname{di}(\sigma, \tau)$, and let $\left(i_{\sigma}, j_{\sigma}\right)$ and $\left(i_{\tau}, j_{\tau}\right)$ be the labels on $\sigma \triangleleft \sigma_{1}$ and $\tau_{1} \triangleleft \tau$, respectively. Since $\sigma(h) \neq \tau(h)$, it follows from Lemma 14 that h is in some label on C_{I} and some label on C_{D}. Since C_{I} is increasing, $i_{\sigma}=h$, and since $\sigma_{1} \notin F_{n}^{\leq a}, h$ is an exceedance of σ (Type 5). Since C_{D} is decreasing, $i_{\tau}=h$, and since $\tau_{1} \notin F_{n}^{\leq a}, h$ is a fixed point of τ_{1} (Type 1). Hence, $\sigma[h, h+1]>\tau_{1}[h, h+1]$. By Definition 4, this contradicts the fact that $\sigma \leq \tau_{1}$.

Lemma 16 Let $\sigma \triangleleft \tau$ in $F_{n}^{\geq a}$. Then $\sigma \triangleleft \tau$ in I_{n}.
Proof: Assume that $\sigma \nrightarrow \tau$ in I_{n}, and let $C_{I}=\sigma \triangleleft \sigma_{1} \triangleleft \cdots \triangleleft \sigma_{k} \triangleleft \tau$ be the increasing σ - τ-chain in I_{n} and $C_{D}=\sigma \triangleleft \tau_{k} \triangleleft \cdots \triangleleft \tau_{1} \triangleleft \tau$ the decreasing $\sigma-\tau$-chain in I_{n}. Since $\sigma \triangleleft \tau$ in $F_{n}^{\geq a}$, neither σ_{1} nor τ_{1} belongs to $F_{n}^{\geq a}$.

Let $h=\operatorname{di}(\sigma, \tau)$, and let $\left(i_{\sigma}, j_{\sigma}\right)$ and $\left(i_{\tau}, j_{\tau}\right)$ be the labels on $\sigma \triangleleft \sigma_{1}$ and $\tau_{1} \triangleleft \tau$, respectively. Since $\sigma(h) \neq \tau(h)$, it follows from Lemma 14 that h is in some label on C_{I} and some label on C_{D}. Since C_{I} is increasing, $i_{\sigma}=h$, and since $\sigma_{1} \notin F_{n}^{\Sigma a}, h$ is a fixed point of σ (Type 1). Since C_{D} is decreasing, $i_{\tau}=h$, and since $\tau_{1} \notin F_{n}^{\geq a}, h$ is an exceedance of τ_{1} (Type 5).

Let m be such that h is an exceedance of $\tau_{1}, \ldots, \tau_{m-1}$ and a fixed point of τ_{m} (with $\tau_{k+1}=\sigma$). Then the labels on $\tau \triangleright \tau_{1} \triangleright \cdots \triangleright \tau_{m}$ are $\left(h, j_{1}\right), \ldots,\left(h, j_{m}\right)$, where $j_{1}<j_{2}<\cdots<j_{m}$. Since $\tau_{1}>$ $\tau_{2}>\cdots>\tau_{m-1}, \tau_{1}(h)>\tau_{2}(h)>\cdots>\tau_{m-1}(h)$. Since h is a fixed point of τ_{m} but an exceedance of τ_{m-1}, the cover $\tau_{m} \triangleleft \tau_{m-1}$ is of Type 1 or 2 , whence $\tau_{m-1}(h)=j_{m}$ or $\tau_{m-1}(h)=\tau_{m}\left(j_{m}\right)>j_{m}$, respectively; hence, $\tau_{m-1}(h) \geq j_{m}$. Therefore, $j_{1}<j_{m} \leq \tau_{m-1}(h) \leq \tau_{1}(h)$. However, since the cover $\tau_{1} \triangleleft \tau$ is of Type $5, \tau_{1}(h)<j_{1}$, which is a contradiction.

The proof, which is omitted here, is largely a combination of the proofs of Lemmas 15 and 16
Proposition 18 The posets $F_{n}^{\leq a}, F_{n}^{\geq a}$, and $F_{n}^{a_{1}: a_{2}}$ are graded.
Proof: This follows from Lemmas 13, 15, 16, and 17 ,
In the following two results, we consider the sets A for which F_{n}^{A} is not graded.
Proposition 19 If there is an $i \in[2, n-4]$ such that $i \in A$ but $i-2, i+2 \notin A$, then F_{n}^{A} is not graded.
The proof, which is not given here, is similar to, but easier than, the proof of Proposition 20
Proposition 20 If there is an $i \notin A$ and a positive integer m such that $i-2, i+2 m \in A-\{n\}$, then F_{n}^{A} is not graded.

Proof sketch: We first prove that $F_{k}^{\{0, k-2\}}$, where $k \geq 6$ is even, is not graded. Let $\sigma=12 \cdots(k-$ 2) $k(k-1)$ and $\tau=k 23 \cdots(k-1) 1$, and consider the interval $[\sigma, \tau]$. We obtain a $\sigma-\tau$-chain C in I_{k} by $k-2 f e$-rises with labels $(k-2, k-1),(k-3, k-2), \ldots,(1,2)$ (from σ to $\tau)$. We also obtain a
σ - τ-chain in I_{n} by $(k-2) / 2 f f$-rises with labels $(1,2),(3,4), \ldots,(k-3, k-2)$, followed by $(k-2) / 2$ crossing $e e$-rises with labels $(k-3, k-1),(k-5, k-3), \ldots,(1,3)$.

Let π be the fixed point-free involution obtained after the $f f$-rises. Since each $f f$-rise decreases the number of fixed points and I_{k} is graded, $(\sigma, \pi) \cap F_{k}^{\{0, k-2\}}=\emptyset$, and since each crossing ee-rise increases the number of fixed points and I_{k} is graded, $(\pi, \tau) \cap F_{k}^{\{0, k-2\}}=\emptyset$. Hence, C is a $\sigma-\tau$-chain in $F_{k}^{\{0, k-2\}}$ of length $k-2$, while $\sigma \triangleleft \pi \triangleleft \tau$ is a $\sigma-\tau$-chain in $F_{k}^{\{0, k-2\}}$ of length 2 . Thus $F_{k}^{\{0, k-2\}}$ is not graded. Figure 3 illustrates the situation when $k=6$.

Now we have to obtain the right number of fixed points. The details are not given here.

Figure 3: Two σ - τ-chains in I_{6} of length 4, and two σ - τ-chains in $F_{6}^{\{0,4\}}$ of length 4 (right) and length 2 (left); the involutions marked by a \bullet belong to $F_{6}^{\{0,4\}}$, and the involutions marked by a o belong to $I_{6}-F_{6}^{\{0,4\}}$. On the edges (covers in I_{6}) are the labels (i, j).

We are now ready to prove our main result:
Proof of Theorem 1: The first claim follows from Lemma 10 and Propositions 18, 19, and 20. (It is readily checked that if $F_{n}^{A-\{n\}}$ does not belong to $\left\{\emptyset, F_{n}^{\leq a}, F_{n}^{\geq a}, F_{n}^{a_{1}: a_{2}}\right\}$, then either there is an $i \in[2, n-4]$ such that $i \in A$ but $i-2, i+2 \notin A$, or there are an $i \notin A$ and a positive integer m such that $i-2, i+2 m \in A-\{n\}$.) The second claim follows from Lemma 7, Proposition 12 , and Lemmas 15 16. and 17 The third claim follows from the second claim and Proposition 11 .

4 EL-shellability of F_{n}^{0}

In this section, we give a new proof of Theorem B, due to Can, Cherniavsky, and Twelbeck [3]. Our proof is largely based on the same main idea as their proof, together with the technique used in the proof of Lemma 15. The proof in [3] goes as follows:

Let $\sigma<\tau$ in F_{n}^{0}. It follows from, e.g., Theorem A and the paragraphs following it, that there exists a $\sigma-\tau$-chain in I_{n} that is contained in F_{n}^{0}. Let C be the lex-maximal such chain. The idea of the proof is to show that C is decreasing. Then, by reversing the lexicographic order on the set $\left\{(i, j) \in[n]^{2} \mid i<j\right\}$ (i.e., by letting $\left(i_{1}, j_{1}\right)<\left(i_{2}, j_{2}\right)$ if and only if $i_{1}>i_{2}$, or $i_{1}=i_{2}$ and $j_{1}>j_{2}$), one obtains an edgelabelling of F_{n}^{0} such that in each interval, there is an increasing $\sigma-\tau$-chain which is lex-minimal. By Lemma 9 and the remark following it, this is an EL-labelling of F_{n}^{0}.

We use the same main idea, namely, to show that the decreasing σ - τ-chain in I_{n} is contained in F_{n}^{0}, and then reverse the lexicographic order. However, we give a direct proof of this fact. By using the same technique as in the proof of Lemma 15, we get a very short argument.

Lemma 21 Let $\sigma<\tau$ in F_{n}^{0} and let $C_{D}=\sigma \triangleleft \tau_{k} \triangleleft \cdots \triangleleft \tau_{1} \triangleleft \tau$ be the decreasing σ - τ-chain in I_{n}, where $k \geq 1$. Then $\tau_{1}, \ldots, \tau_{k} \in F_{n}^{0}$.

Proof: Since the decreasing $\sigma-\tau_{1}$-chain in I_{n} is $\sigma \triangleleft \tau_{k} \triangleleft \cdots \triangleleft \tau_{2} \triangleleft \tau_{1}$, it suffices to prove that $\tau_{1} \in F_{n}^{0}$.
Let $h=\operatorname{di}(\sigma, \tau)$, let $C_{I}=\sigma \triangleleft \sigma_{1} \triangleleft \cdots \triangleleft \sigma_{k} \triangleleft \tau$ be the increasing $\sigma-\tau$-chain in I_{n}, and let $\left(i_{\sigma}, j_{\sigma}\right)$ and $\left(i_{\tau}, j_{\tau}\right)$ be the labels on $\sigma \triangleleft \sigma_{1}$ and $\tau_{1} \triangleleft \tau$, respectively. Since $\sigma(h) \neq \tau(h)$, it follows from Lemma 14 that h is in some label on C_{I} and some label on C_{D}. Since C_{I} is increasing, $i_{\sigma}=h$, and since σ has no fixed points, h is an exceedance of σ (Type 4, 5, or 6). Since C_{D} is decreasing, $i_{\tau}=h$, and were $\tau_{1} \notin F_{n}^{0}, h$ would be a fixed point of τ_{1} (Type 1). Hence, by Definition $4 \tau_{1} \in F_{n}^{0}$.

We can now complete the proof of Theorem B.
Proof of Theorem B; Let $\sigma<\tau$ in F_{n}^{0}. By Lemma 21, the decreasing σ - τ-chain in I_{n} is contained in F_{n}^{0}. If we can show that this chain is lex-maximal, then by reversing the lexicographic order and invoking Lemma 9 , we are done.

In order to obtain a contradiction, let $C=\sigma_{1} \triangleleft \cdots \triangleleft \sigma_{k}$ be the lex-maximal $\sigma-\tau$-chain in I_{n}, and assume that it is not decreasing; say that $\lambda\left(\sigma_{1}, \sigma_{2}\right) \leq \lambda\left(\sigma_{2}, \sigma_{3}\right)$. By Lemma $8, \sigma_{1} \triangleleft \sigma_{2} \triangleleft \sigma_{3}$ is lexminimal among the $\sigma_{1}-\sigma_{3}$-chains in I_{n}. Hence, $\sigma_{1} \triangleleft \sigma_{2}^{\prime} \triangleleft \sigma_{3} \triangleleft \cdots \triangleleft \sigma_{k}$, where $\sigma_{1} \triangleleft \sigma_{2}^{\prime} \triangleleft \sigma_{3}$ is the decreasing $\sigma_{1}-\sigma_{3}$-chain, is lex-larger than C, which is a contradiction.

Is it possible to use the same idea to prove that every interval in $F_{n}^{A} \subset I_{n}$ is EL-shellable for some $A \neq\{0\}$? Unfortunately, the answer is no, since for all $A \neq\{0\}$ (except the trivial cases $A=\emptyset$ and $A=\{n\})$, it is possible to find $\sigma_{1}<\tau_{1}$ and $\sigma_{2}<\tau_{2}$ in F_{n}^{A}, such that the increasing $\sigma_{1}-\tau_{1}$-chain and the decreasing $\sigma_{2}-\tau_{2}$-chain in I_{n}, are of length 2 and are not contained in F_{n}^{A}.

Acknowledgements

The author thanks Axel Hultman for helpful comments and fruitful discussions.

References

[1] A. Björner. Shellable and Cohen-Macaulay partially ordered sets. Trans. Amer. Math. Soc., 260: 159-183, 1980.
[2] A. Björner and F. Brenti. Combinatorics of Coxeter groups, volume 231 of Graduate Texts in Mathematics. Springer, New York, 2005.
[3] M. B. Can, Y. Cherniavsky, and T. Twelbeck. Lexicographic shellability of the Bruhat-Chevalley order on fixed-point-free involutions. Israel J. Math., to appear.
[4] P. H. Edelman. The Bruhat order of the symmetric group is lexicographically shellable. Proc. Amer. Math. Soc., 82:355-358, 1981.
[5] S. Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 80 of Pure and Applied Mathematics. Academic Press, New York, 1978.
[6] A. Hultman. Fixed points of involutive automorphisms of the Bruhat order. Adv. Math., 195:283296, 2005.
[7] A. Hultman. The combinatorics of twisted involutions in Coxeter groups. Trans. Amer. Math. Soc., 359:2787-2798, 2007.
[8] A. Hultman. Twisted identities in Coxeter groups. J. Algebraic Combin., 28:313-332, 2008.
[9] F. Incitti. The Bruhat order on the involutions of the symmetric group. J. Algebraic Combin., 20: 243-261, 2004.
[10] R. W. Richardson and T. A. Springer. The Bruhat order on symmetric varieties. Geom. Dedicata, 35:389-436, 1990.
[11] R. W. Richardson and T. A. Springer. Complements to: The Bruhat order on symmetric varieties. Geom. Dedicata, 49:231-238, 1994.
[12] R. P. Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.

[^0]: ${ }^{\dagger}$ Email: mikael.hansson@liu.se
 1365-8050 © 2015 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

[^1]: ${ }^{(i)}$ The results below are taken from [6] 7]. In general, we do not indicate which results are from which paper. For general Coxeter group terminology and results, see [2].

