# Rigged configurations of type $D_4^{(3)}$ and the filling map

Travis Scrimshaw<sup>1†</sup>

<sup>1</sup>University of California, Davis, CA 95616

Abstract. We give a statistic preserving bijection from rigged configurations to a tensor product of Kirillov–Reshetikhin crystals  $\bigotimes_{i=1}^{N} B^{1,s_i}$  in type  $D_4^{(3)}$  by using virtualization into type  $D_4^{(1)}$ . We consider a special case of this bijection with  $B = B^{1,s}$ , and we obtain the so-called Kirillov–Reshetikhin tableaux model for the Kirillov–Reshetikhin crystal.

**Résumé.** Nous donnons une bijection prservant les statistiques entre les configurations gréées et les produits tensoriels de cristaux de Kirillov–Reshetikhin  $\bigotimes_{i=1}^{N} B^{1,s_i}$  de type  $D_4^{(3)}$ , via une virtualisation en type  $D_4^{(1)}$ . Nous considérons un cas particulier de cette bijection pour  $B = B^{1,s}$  et obtenons ainsi les modèles de tableaux appelés Kirillov–Reshetikhin pour le cristal Kirillov–Reshetikhin.

Keywords: rigged configuration, Kirillov-Reshetikhin crystal, bijection

## 1 Introduction

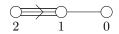
Rigged configurations were first introduced by Kerov, Kirillov, and Reshetikhin in [14, 15] as combinatorial objects that index solutions to the Bethe Ansatz for the Heisenberg spin chains. Rigged configurations were shown to be in bijection with semi-standard tableaux and classical highest weight elements of a tensor power of the vector representation in type  $A_n^{(1)}$ . This bijection was then extended to Littlewood– Richardson tableaux [16], to non-exceptional types [20], and to type  $E_6^{(1)}$  [19]. This bijection  $\Phi$  between rigged configurations and the tensor powers has been further expanded to include classically highest weight elements in a tensor product of certain Kirillov–Reshetikhin (KR) crystals [16, 21, 18, 27, 28].

Rigged configurations have been shown to display remarkable representation theoretic properties. A (classical) crystal structure was first given for simply-laced types [26], which was then extended to all finite types [27] and affine types [24]. While  $\Phi$  is defined recursively, making it difficult to work with, it preserves certain natural statistics (cocharge and energy), giving a bijective proof of the X = M conjecture of [5, 6]. Furthermore, the combinatorial *R*-matrix transforms into the identity map on rigged configurations under  $\Phi$ . Rigged configurations are also well-behaved under virtualization [21, 22, 27], a process of realizing a non-simply-laced type crystal inside of a simply-laced type, and embeddings  $B(\lambda) \hookrightarrow B(\mu)$  where  $\lambda \leq \mu$  component-wise, leading to a model for  $B(\infty)$  [24].

<sup>&</sup>lt;sup>†</sup>Partially supported by NSF grant OCI-1147247

<sup>1365-8050 © 2015</sup> Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

Travis Scrimshaw



**Fig. 2.1:** Dynkin diagram of type  $D_4^{(3)}$ .

KR crystals in non-exceptional types were given a combinatorial model in [4] using Kashiwara–Nakashima tableaux [13]. The bijection  $\Phi$  has also lead to a new tableaux model for KR crystals, coined Kirillov–Reshetikhin (KR) tableaux, using filled rectangular tableaux [18, 25, 27]. The map between Kashiwara–Nakashima tableaux [13] and the KR tableaux is called the filling map.

The goal of this work is to extend  $\Phi$  to type  $D_4^{(3)}$  and describe the filling map. For this extended abstract, we will be focusing on the KR crystals  $B^{1,s}$  and the rigged configurations associated with tensor products of the form  $\bigotimes_{i=1}^{N} B^{1,s_i}$ . In particular, we show  $\Phi$  is a classical crystal isomorphism, and we describe the filling map for  $B^{1,s}$ . We do so by showing the filling map and bijection commute with the virtualization map, proving more special cases of many of the conjectures stated in [27].

This extended abstract is organized as follows. In Section 2, we give background on crystals, virtualization, and rigged configurations. In Section 3, we describe the bijection  $\Phi$ . In Section 4, we describe the filling map . In Section 5, we describe the virtualization map and our main results. In Section 6, we give possible extensions to  $B^{2,s}$  and some open questions. We conclude in Section 7 with some examples using Sage [29].

## 2 Background

#### 2.1 Crystals

For this extended abstract, let  $\mathfrak{g}$  be the Kac–Moody algebra of type  $D_4^{(3)}$  with index set  $I = \{0, 1, 2\}$ , generalized Cartan matrix  $A = (A_{ij})_{i,j\in I}$ , weight lattice P, root lattice Q, fundamental weights  $\{\Lambda_i \mid i \in I\}$ , simple roots  $\{\alpha_i \mid i \in I\}$ , and simple coroots  $\{h_i \mid i \in I\}$ . There is a canonical pairing  $\langle , \rangle : P^{\vee} \times P \longrightarrow \mathbb{Z}$  defined by  $\langle h_i, \alpha_j \rangle = A_{ij}$ , where  $P^{\vee}$  is the dual weight lattice. Let  $\mathfrak{g}_0$  denote the classical subalgebra of type  $G_2$  with index set  $I_0 = \{1, 2\}$ , weight lattice  $\overline{P}$ , root lattice  $\overline{Q}$ , fundamental weights  $\{\overline{\Lambda}_1, \overline{\Lambda}_2\}$ , and simple roots  $\{\overline{\alpha}_1, \overline{\alpha}_2\}$ .

An abstract  $U_q(\mathfrak{g})$ -crystal is a nonempty set  $\mathcal{B}$  together with a weight function  $\mathrm{wt} \colon \mathcal{B} \longrightarrow P$ , crystal operators  $e_a, f_a \colon \mathcal{B} \longrightarrow \mathcal{B} \sqcup \{0\}$ , and maps  $\varepsilon_a, \varphi_a \colon \mathcal{B} \longrightarrow \mathbb{Z} \sqcup \{-\infty\}$  for  $a \in I$ , subject to the conditions

1.  $\varphi_a(b) = \varepsilon_a(b) + \langle h_a, \operatorname{wt}(b) \rangle$  for all  $a \in I$ ,

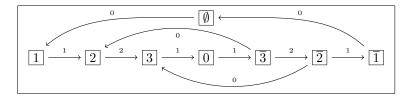
2. if 
$$e_a b \in \mathcal{B}$$
, then  $\varepsilon_a(e_a b) = \varepsilon_a(b) - 1$ ,  $\varphi_a(e_a b) = \varphi_a(b) + 1$ , and  $\operatorname{wt}(e_a b) = \operatorname{wt}(b) + \alpha_a$ .

3. if 
$$f_a b \in \mathcal{B}$$
, then  $\varepsilon_a(f_a b) = \varepsilon_a(b) + 1$ ,  $\varphi_a(f_a b) = \varphi_a(b) - 1$ , and  $\operatorname{wt}(f_a b) = \operatorname{wt}(b) - \alpha_a$ .

- 4.  $f_a b = b'$  if and only if  $b = e_a b'$  for  $b, b' \in \mathcal{B}$  and  $a \in I$ ,
- 5. if  $\varphi_a(b) = -\infty$  for  $b \in \mathcal{B}$ , then  $e_a b = f_a b = 0$ .

We define for all  $b \in \mathcal{B}$ 

$$\varepsilon_a(b) = \max\{k \in \mathbb{Z}_{\geq 0} \mid e_a^k b \neq 0\}, \qquad \varphi_a(b) = \max\{k \in \mathbb{Z}_{\geq 0} \mid f_a^k b \neq 0\}.$$
(2.1)



**Fig. 2.2:** The KR crystal  $B^{1,1}$  of type  $D_4^{(3)}$  which is isomorphic to  $B(\overline{\Lambda}_1) \oplus B(0)$  as  $U_q(\mathfrak{g}_0)$ -crystals.

An abstract  $U_a(\mathfrak{g})$ -crystal with  $\varepsilon_a$  and  $\varphi_a$  defined as above is called a *regular* crystal.

Let  $\mathcal{B}_1$  and  $\mathcal{B}_2$  be abstract  $U_q(\mathfrak{g})$ -crystals. The tensor product of crystals  $\mathcal{B}_2 \otimes \mathcal{B}_1$  is defined to be the Cartesian product  $\mathcal{B}_2 \times \mathcal{B}_1$  with the crystal structure

$$\begin{aligned} e_i(b_2 \otimes b_1) &= \begin{cases} e_i b_2 \otimes b_1 & \text{if } \varepsilon_i(b_2) > \varphi_i(b_1), \\ b_2 \otimes e_i b_1 & \text{if } \varepsilon_i(b_2) \le \varphi_i(b_1), \end{cases} \quad \varepsilon_i(b_2 \otimes b_1) = \max\left(\varepsilon_i(b_2), \varepsilon_i(b_1) - \langle h_i, \operatorname{wt}(b_2) \rangle\right) \\ f_i(b_2 \otimes b_1) &= \begin{cases} f_i b_2 \otimes b_1 & \text{if } \varepsilon_i(b_2) \ge \varphi_i(b_1), \\ b_2 \otimes f_i b_1 & \text{if } \varepsilon_i(b_2) < \varphi_i(b_1), \end{cases} \quad \varphi_i(b_2 \otimes b_1) = \max\left(\varphi_i(b_1), \varphi_i(b_2) + \langle h_i, \operatorname{wt}(b_1) \rangle\right) \\ & \operatorname{wt}(b_2 \otimes b_1) = \operatorname{wt}(b_2) + \operatorname{wt}(b_1). \end{aligned}$$

**Remark 2.1** Our tensor product convention is the opposite to that given in [12].

Let  $\mathcal{B}_1$  and  $\mathcal{B}_2$  be two abstract  $U_q(\mathfrak{g})$ -crystals. A crystal morphism  $\psi \colon \mathcal{B}_1 \longrightarrow \mathcal{B}_2$  is a map  $\mathcal{B}_1 \sqcup \{0\} \longrightarrow \mathcal{B}_2 \sqcup \{0\}$  with  $\psi(0) = 0$  such that for  $b \in \mathcal{B}_1$ 

- 1. if  $\psi(b) \in \mathcal{B}_2$ , then  $wt(\psi(b)) = wt(b)$ ,  $\varepsilon_i(\psi(b)) = \varepsilon_i(b)$ , and  $\varphi_i(\psi(b)) = \varphi_i(b)$ ;
- 2. we have  $\psi(e_i b) = e_i \psi(b)$  provided  $\psi(e_i b) \neq 0$  and  $e_i \psi(b) \neq 0$ ;
- 3. we have  $\psi(f_i b) = f_i \psi(b)$  provided  $\psi(f_i b) \neq 0$  and  $f_i \psi(b) \neq 0$ .

A crystal embedding or isomorphism is a crystal morphism such that the induced map  $\mathcal{B}_1 \sqcup \{0\} \longrightarrow \mathcal{B}_2 \sqcup \{0\}$  is an embedding or bijection respectively. A crystal morphism is *strict* if it commutes with all crystal operators.

If an abstract  $U_q(\mathfrak{g})$ -crystal  $\mathcal{B}$  is isomorphic to the crystal basis of an integrable  $U_q(\mathfrak{g})$ -module, we simply say  $\mathcal{B}$  is a  $U_q(\mathfrak{g})$ -crystal. In particular, an irreducible highest weight  $U_q(\mathfrak{g}_0)$ -module with highest weight  $\lambda$  admits a crystal basis [11], which we denote by  $B(\lambda)$ . Moreover there is a unique element  $u_{\lambda} \in B(\lambda)$  such that wt $(u_{\lambda}) = \lambda$  and  $e_a u_{\lambda} = 0$  for all  $a \in I_0$ . For each dominant integral weight  $\lambda = k_1 \overline{\Lambda}_1 + k_2 \overline{\Lambda}_2$ , we can associate a partition  $(k_1 + k_2, k_2)$ . We can realize  $B(\lambda)$  as semistandard tableaux of shape  $\lambda$  filled with entries in  $B(\overline{\Lambda}_1)$  whose crystal structure is given by embedding into  $B(\overline{\Lambda}_1)^{\otimes |\lambda|}$  using the reverse far-eastern reading word. The resulting tableaux were explicitly described by Kang and Misra [9].

#### 2.2 Kirillov–Reshetikhin crystals

An important class of finite dimensional  $U'_q(\mathfrak{g})$ -representations are Kirillov–Reshetikhin (KR) modules  $W^{r,s}$  indexed by  $r \in I_0$  and  $s \in \mathbb{Z}_{>0}$ . KR modules are characterized by their Drinfeld polynomials [2, 3]

and correspond to the minimal affinization of  $B(s\overline{\Lambda}_r)$  [1]. The KR modules  $W^{1,s}$  admit a crystal basis called *Kirillov–Reshetikhin (KR) crystals* and denoted by  $B^{1,s}$ . As  $U_q(\mathfrak{g}_0)$ -crystals, we have  $B^{1,s} \cong \bigoplus_{k=1}^s B(k\overline{\Lambda}_1)$ , and  $B^{1,s}$  is a perfect crystal [10]. This means we can use a semi-infinite tensor product of  $B^{1,s}$  to realize highest weight  $U_q(\mathfrak{g})$ -crystals, see [7] for details.

of  $B^{1,s}$  to realize highest weight  $U_q(\mathfrak{g})$ -crystals, see [7] for details. There is a statistic called *energy* defined on  $B = \bigotimes_{i=1}^N B^{1,s_i}$  [5]. First we define the *local energy function* on  $B^{1,s} \otimes B^{1,t}$  as follows. The combinatorial *R*-matrix is the unique  $U'_q(\mathfrak{g})$ -crystal isomorphism  $R: B^{1,s} \otimes B^{1,t} \longrightarrow B^{1,t} \otimes B^{1,s}$  [10]. Let  $c' \otimes c = R(b \otimes b')$ .

$$H(e_i(b \otimes b')) = H(b \otimes b') + \begin{cases} -1 & i = 0 \text{ and } e_0(b \otimes b') = b \otimes e_0b' \text{ and } e_0(c' \otimes c) = c' \otimes e_0c, \\ 1 & i = 0 \text{ and } e_0(b \otimes b') = e_0b \otimes b' \text{ and } e_0(c' \otimes c) = e_0c' \otimes c, \\ 0 & \text{otherwise.} \end{cases}$$
(2.2)

The local energy function is defined up to an additive constant [8], and so we normalize H by the condition  $H(1^s \otimes 1^t) = 0$  where  $1^k$  is row of length k filled with 1. Next we define  $D_{B^{1,s}} : B^{1,s} \to \mathbb{Z}$  by

$$D_{B^{1,s}}(b) = H(b \otimes b^{\sharp}) - H(1^s \otimes b^{\sharp}), \qquad (2.3)$$

where  $b^{\sharp}$  is the unique element such that  $\varphi(b^{\sharp}) = s\Lambda_0$ . Then we define

$$D(b_N \otimes \dots \otimes b_1) = \sum_{1 \le i < j \le N} H_i R_{i+1} R_{i+2} \cdots R_{j-1} + \sum_{j=1}^N D_{B^{1,s_j}} R_1 R_2 \cdots R_{j-1}, \qquad (2.4)$$

where  $R_i$  and  $H_i$  are the combinatorial *R*-matrix and local energy function, respectively, acting on the *i*-th and (i+1)-th factors and  $D_{B^{1,s_j}}$  acts on the rightmost factor. We say the *energy* of an element  $b \in B$  is D(b).

#### 2.3 Rigged configurations

Let  $\mathcal{H}_0 = I_0 \times \mathbb{Z}_{>0}$ . Consider a multiplicity array  $L = (L_i^{(a)} \in \mathbb{Z}_{\geq 0} \mid (a, i) \in \mathcal{H}_0)$  and a dominant integral weight  $\lambda$  of  $\mathfrak{g}_0$ . A  $(L; \lambda)$ -configuration is a sequence of partitions  $\nu = \{\nu^{(a)} \mid a \in I\}$  such that

$$\sum_{(a,i)\in\mathcal{H}_0} im_i^{(a)}\overline{\alpha}_a = \sum_{(a,i)\in\mathcal{H}_0} iL_i^{(a)}\overline{\Lambda}_a - \lambda,$$
(2.5)

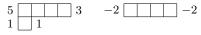
where  $m_i^{(a)}$  is the number of parts of length *i* in the partition  $\nu^{(a)}$ . We denote the set of  $(L, \lambda)$ -configurations by  $C(L, \lambda)$ . The vacancy numbers of  $\nu \in C(L; \lambda)$  are defined as

$$p_i^{(a)} = \sum_{j \ge 1} \min(i, j) L_j^{(a)} - \sum_{(b, j) \in \mathcal{H}_0} A_{ab} \min(i, j) m_j^{(b)}.$$
(2.6)

A rigged configuration of classical weight  $\lambda$  is a  $(L; \lambda)$ -configuration  $\nu$ , along with a sequence of multisets of integers  $J = \{J_i^{(a)} \mid (a, i) \in \mathcal{H}_0\}$  such that  $|J_i^{(a)}| = m_i^{(a)}$  (the size of  $J_i^{(a)}$ ) and  $\max J_i^{(a)} \leq p_i^{(a)}$ . (Often each  $J_i^{(a)}$  will be sorted in weakly decreasing order.) So to each row of length i, we have an integer  $x \in J_i^{(a)}$  and we call the pair (i, x) a string. The integers  $x \in J_i^{(a)}$  are called *label*, rigging, or

quantum number. The colabel of a string (i, x) is defined as  $p_i^{(a)} - x$ . A rigged configuration is highest weight if  $\min J_i^{(a)} \ge 0$  for all  $(a, i) \in \mathcal{H}_0$  and is valid if  $\max J_i^{(a)} \le p_i^{(a)}$ . We say a string (i, a) is singular if  $p_i^{(a)} = x$  and is quasi-singular if  $p_i^{(a)} = x - 1$  and  $\max J_i^{(a)} \ne p_i^{(a)}$ .

**Example 2.2** *Rigged configurations will be depicted with vacancy numbers on the left and labels on the right. For example,* 



is a rigged configuration of weight  $2\overline{\Lambda}_1 + \overline{\Lambda}_2$  with L is given by  $L_1^{(1)} = L_2^{(1)} = L_1^{(2)} = 1$  with all other  $L_i^{(a)} = 0$ . See Section 7 on how to construct this example in Sage.

Denote by  $\mathrm{RC}^*(L; \lambda)$  the set of valid highest weight rigged configurations. Rigged configurations have an abstract  $U_q(\mathfrak{g}_0)$ -crystal structure [27]. To obtain the weight, we first note that we can compute the classical weight by

$$\overline{\mathrm{wt}}(\nu, J) = \sum_{(a,i)\in\mathcal{H}_0} i \left( L_i^{(a)} \overline{\Lambda}_a - m_i^{(a)} \overline{\alpha}_a \right).$$
(2.7)

We can extend this to wt:  $\operatorname{RC}(L; \lambda) \longrightarrow P$  by  $\operatorname{wt}(\nu, J) = k_0 \Lambda_0 + \overline{\operatorname{wt}}(\nu, J)$ , where  $k_0$  is such that  $\langle \operatorname{wt}(\nu, J), c \rangle = 0$  with c the canonical central element of  $\mathfrak{g}$  (i.e., we make  $\operatorname{wt}(\nu, J)$  be level 0). Explicitly, if  $\overline{\operatorname{wt}}(\nu, J) = c_1 \overline{\Lambda}_1 + c_2 \overline{\Lambda}_2$ , then we have  $k_0 = -2c_1 - 3c_2$ . Next we recall the crystal operators.

**Definition 2.3** Let  $\mathfrak{g}_0$  be a Lie algebra of finite type and L a multiplicity array. Let  $(\nu, J)$  be a valid rigged configuration. Fix  $a \in I_0$  and let x be the smallest label of  $(\nu, J)^{(a)}$ , the strings associated to  $\nu^{(a)}$ .

- 1. If  $x \ge 0$ , then set  $e_a(\nu, J) = 0$ . Otherwise, let  $\ell$  be the minimal length of all strings in  $(\nu, J)^{(a)}$  which have label x. The rigged configuration  $e_a(\nu, J)$  is obtained by replacing the string  $(\ell, x)$  with the string  $(\ell 1, x + 1)$  and changing all other labels so that all colabels remain fixed.
- 2. If x > 0, then add the string (1, -1) to  $(\nu, J)^{(a)}$ . Otherwise, let  $\ell$  be the maximal length of all strings in  $(\nu, J)^{(a)}$  which have label x and replace the string  $(\ell, x)$  by the string  $(\ell + 1, x 1)$ . In both cases, change all other labels so that all colabels remain fixed. If the result is a valid rigged configuration, then it is  $f_a(\nu, J)$ . Otherwise  $f_a(\nu, J) = 0$ .

**Remark 2.4** The condition for highest weight rigged configurations matches with the usual crystal theoretic definition; i.e., that  $e_a(\nu, J) = 0$  for all  $(\nu, J) \in \mathrm{RC}^*(L; \lambda)$ .

**Example 2.5** Let  $(\nu, J)$  be the rigged configuration from Example 2.2. Then

$$e_{1}(\nu, J) = 0, \qquad e_{2}(\nu, J) = \begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 0 \\ -1 \\ -1 \\ -1 \end{array} \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \begin{array}{c} -1 \\ -1 \end{array} \begin{array}{c} -1 \\ -1 \end{array} \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \begin{array}{c} -1 \\ -1 \end{array} \begin{array}{c} -1 \\ -1 \\ -1 \end{array} \begin{array}{c} -1 \\ -1 \end{array} \begin{array}{c} -1 \\ -1 \\ -1 \end{array}$$

Let  $\operatorname{RC}(L; \lambda)$  denote the set generated from  $\operatorname{RC}^*(L; \lambda)$  by the crystal operators. Let  $\operatorname{RC}(L)$  be the closure under the crystal operators of the set  $\operatorname{RC}^*(L) = \bigsqcup_{\lambda \in P^+} \operatorname{RC}^*(L; \lambda)$ .

**Theorem 2.6 ([27])** Let  $\mathfrak{g}_0$  be a Lie algebra of finite type. For  $(\nu, J) \in \mathrm{RC}^*(L; \lambda)$ , let  $X_{(\nu,J)}$  be the closure of  $(\nu, J)$  under  $e_a$ ,  $f_a$  for  $a \in I_0$ . Then  $X_{(\nu,J)} \cong B(\lambda)$  as  $U_q(\mathfrak{g}_0)$ -crystals.

There is a statistic called *cocharge* on rigged configurations given by

$$cc(\nu, J) = \frac{1}{2} \sum_{a, b \in I_0} \sum_{i, j \in \mathbb{Z}_{>0}} (\alpha_a | \alpha_b) \min(i, j) m_i^{(a)} m_j^{(b)} + \sum_{(a, i) \in \mathcal{H}_0} \sum_{x \in J_i^{(a)}} x.$$
(2.8)

Moreover cocharge is invariant under  $e_a$  and  $f_a$  for  $a \in I_0$  [27].

#### 2.4 Virtual crystals

Let  $\hat{\mathfrak{g}}$  be the Kac–Moody algebra with index set  $\hat{I}$  of type  $D_4^{(1)}$  and  $\hat{\mathfrak{g}}_0$  be of type  $D_4$ . We consider the diagram folding  $\phi: \hat{I} \searrow I$  defined by  $\phi(0) = 0$ ,  $\phi(2) = 1$ , and  $\phi(1) = \phi(3) = \phi(4) = 2$ . The folding  $\phi$  restricts to a diagram folding of type  $\hat{\mathfrak{g}}_0 \searrow \mathfrak{g}_0$ , and by abuse of notation, we also denote this folding by  $\phi$ .

**Remark 2.7** To simplify our notation, for any object X or  $\overline{X}$  of  $\mathfrak{g}_0$ , we denote the corresponding object of  $\widehat{\mathfrak{g}}_0$  by  $\widehat{X}$ .

Furthermore, the folding  $\phi$  induces an embedding of weight lattices  $\Psi \colon \overline{P} \longrightarrow \widehat{P}$  given by

$$\overline{\Lambda}_a \mapsto \sum_{b \in \phi^{-1}(a)} \widehat{\Lambda}_b, \qquad \overline{\alpha}_a \mapsto \sum_{b \in \phi^{-1}(a)} \widehat{\alpha}_b.$$
(2.9)

This gives an embedding of crystals as sets  $v: B(\lambda) \longrightarrow B(\Psi(\lambda))$ , and let  $V(\lambda)$  denote the image of v. We can define a crystal structure on V which is induced from the crystal  $B(\Psi(\lambda))$  by

$$e^{v} := \prod_{\substack{b \in \phi^{-1}(a) \\ \varepsilon_{a}^{v} := \widehat{\varepsilon}_{x}, \\ wt := \Psi^{-1} \circ \widehat{wt}, \\ \end{array}} f^{v} := \prod_{\substack{b \in \phi^{-1}(a) \\ \phi_{a}^{v} := \widehat{\varphi}_{x}, \\ \varphi_{a}^{v} := \widehat{\varphi}_{x}, \qquad (2.10)$$

where we fix some  $x \in \phi^{-1}(a)$ . We say the pair  $(V(\lambda), B(\Psi(\lambda)))$  is a *virtual crystal* and the isomorphism v is the *virtualization map*.

**Proposition 2.8 ([27])** Let  $\mathfrak{g}_0$  be of finite type. Then we have  $B(\lambda) \cong V(\lambda)$  as  $U_q(\mathfrak{g}_0)$ -crystals.

In particular, we can define a virtualization map on rigged configurations by

$$\widehat{\nu}^{(b)} = \nu^{(a)},\tag{2.11a}$$

$$\widehat{J}_i^{(b)} = J_i^{(a)} \tag{2.11b}$$

for all  $b \in \phi^{-1}(a)$  [27].

## 3 The bijection $\Phi$

Consider a tensor product of KR crystals  $B = \bigotimes_{i=1}^{N} B^{r_i,s_i}$ . We write  $\operatorname{RC}(B)$  for  $\operatorname{RC}(L)$  with  $L_i^{(a)}$  equal to the number of factors  $B^{a,i}$  occurring in B. In this section, we describe the map  $\Phi \colon \operatorname{RC}(B) \longrightarrow B$ .

#### 3.1 The basic algorithm $\delta$

We begin by describing the basic step  $\delta$ :  $\operatorname{RC}(B^{1,1} \otimes B^*) \longrightarrow \operatorname{RC}(B^*)$ , where  $B^*$  is some tensor product of KR crystals. Each step  $\delta$  returns some element  $b \in B^{1,1}$ , which we use to create B. We note that this is the special case of the algorithm given in [17] for type  $D_4^{(3)}$ .

Set  $\ell_0 = 1$ . Do the following process for a = 1. Find the minimal integer  $i \ge \ell_{a-1}$  such that  $\nu^{(a)}$  has a singular string of length *i*. If no such *i* exists, then set b = a and  $\ell_a = \infty$  and terminate. Otherwise set  $\ell_a = i$  and repeat the above process for a = 2.

Suppose the process has not terminated. We remove the selected (singular) string of length  $\ell_1$  from consideration. If there are no singular or quasi-singular strings in  $\nu^{(a)}$  larger than  $\ell_2$  or if  $\ell_2 = \ell_1$  and there is only one string of length  $\ell_1$  in  $\nu^{(1)}$ , then set b = 3 and terminate. Otherwise find the smallest  $i \ge \ell_2$  that satisfies one of the following three mutually exclusive conditions:

- (S)  $J^{(1,i)}$  is singular and i > 1;
- (P)  $J^{(1,i)}$  is singular and i = 1;
- (Q)  $J^{(1,i)}$  is quasi-singular.

If (P) holds, set  $b = \emptyset$ , and  $\ell_3 = i$  and terminate. If (S) holds, set  $\ell_3 = i - 1$ ,  $\overline{\ell}_3 = i$ , say case (S) holds for a = n, and continue. If (Q) holds, find the minimal j > i such that (S) holds. If no such j exists, set b = 0 and terminate. Else set  $\overline{\ell}_3 = j$  and say case (Q, S) holds and continue.

Suppose the process has not terminiated, and let a = 2. If  $\ell_a = \overline{\ell}_{a+1}$ , then set  $\overline{\ell}_a = \ell_a$ , afterwards reset  $\ell_a = \overline{\ell}_a - 1$ , and say case (S2) holds for a. Otherwise find the minimal index  $i \ge \overline{\ell}_{a+1}$  such that  $\nu^{(a)}$  has a singular string of length i. If no such i exists, set  $b = \overline{a+1}$  and terminate. Otherwise set  $\overline{\ell}_a = i$  and repeat this for a = 1 (there must exists at least two singular strings if  $\overline{\ell}_3 = \overline{\ell}_1$  and case (S2) does not hold). If the process has not terminated, set  $b = \overline{1}$ .

Set all undefined  $\ell_a$  and  $\overline{\ell}_a$  for a = 1, 2, 3 to  $\infty$ .

#### 3.2 Change in the rigged configuration

The rigged configurations change under  $\delta$  as follows. We first remove a box from  $\overline{\ell}_a$  in  $\nu^{(a)}$  for a = 1, 2, and if case (S2) holds for a, we remove another box from that particular row, otherwise we remove a box from  $\ell_a$ . If case (S) holds, then remove two boxes from  $\overline{\ell}_3$  and make the resulting string singular. If case (Q) holds, remove a box from  $\ell_3$  and make the resulting string singular. If case (Q, S) holds, then we remove both boxes corresponding to  $\ell_3$  and  $\overline{\ell}_3$ , but we make the smaller one (i.e. the row corresponding to  $\ell_3$ ) singular and the larger one quasi-singular. Also make all the changed strings in  $\nu^{(2)}$  singular.

**Remark 3.1** We can determine the inverse algorithm by roughly doing the opposite of the above; in particular, selecting largest (quasi)singular strings at most as long as before.

**Example 3.2** Using the rigged configuration  $(\nu, J)$  from Example 2.2 and  $B = B^{1,1} \otimes B^{1,2} \otimes B^{2,1}$ . Applying the map  $\delta$ , we get b = 3 and



#### 3.3 Extending to arbitrary rectangles

We now extend  $\Phi$  to  $B = \bigotimes_{i=1}^{N} B^{1,s_i}$  by defining the map

ls:  $\operatorname{RC}(B^{1,s} \otimes B^*) \longrightarrow \operatorname{RC}(B^{1,1} \otimes B^{1,s-1} \otimes B^*),$ 

which is known as *left-split*. On the rigged configurations, the map ls is the identity (but perhaps increases the vacancy numbers) and a strict crystal embedding. Thus iterating ls with  $\delta$ , we obtain a map  $\Phi \colon \mathrm{RC}(B) \longrightarrow B$ .

### 4 Filling map

We determine the highest weight rigged configurations for  $B^{1,s}$  by using the virtual Kleber algorithm [22].

**Lemma 4.1** Consider the KR crystal  $B^{1,s}$ . We have  $\operatorname{RC}(B^{1,s}) = \bigoplus_{k=0}^{s} \operatorname{RC}(B^{1,s}; k\overline{\Lambda}_1)$ . Moreover the highest weight rigged configurations in  $\operatorname{RC}(B^{1,s}; k\overline{\Lambda}_1)$  are given by  $\nu^{(1)} = (s - k, s - k)$  and  $\nu^{(2)} = (s - k)$  with all labels 0.

From Lemma 4.1 and the  $U_q(\mathfrak{g}_0)$ -crystal decomposition of  $B^{1,s}$  is multiplicity free, there exists a natural  $U_q(\mathfrak{g}_0)$ -crystal isomorphism  $\iota: \operatorname{RC}(B^{1,s}) \longrightarrow B^{1,s}$ . For type  $D_4^{(3)}$ , we note that  $k\overline{\Lambda}_1$  can be considered as the partition (k).

**Definition 4.2** Let  $B^{1,s}$  be a KR crystal of type  $D_4^{(3)}$  and consider the classical component  $B(k\overline{\Lambda}_1) \subseteq B^{1,s}$ . The filling map fill:  $B^{1,s} \longrightarrow (B^{1,1})^{\otimes s}$  is given by adding  $\lfloor \frac{s-k}{2} \rfloor$  copies of the horizontal domino  $\lceil \overline{1} \rceil$  and an additional  $[\emptyset]$  if s - k is odd.

Let  $T^{1,s}$  denote the image of  $B^{1,s}$  under fill written as a  $1 \times s$  rectangle. We note that  $T^{1,s}$  inherits a classical crystal structure from  $(B^{1,1})^{\otimes s}$ .

Example 4.3 Consider the element

$$b = \boxed{3 \ 0 \ \overline{2} \ \overline{2} \ \overline{1}} \in B(5\overline{\Lambda}_1) \subseteq B^{1,9},$$

then we have

$$\operatorname{fill}(b) = \boxed{3 \ 0 \ \overline{2} \ \overline{2} \ \overline{1} \ \overline{1} \ 1 \ \overline{1} \ 1}.$$

*Now suppose*  $b \in B^{1,8}$ *, then we have* 

 $\operatorname{fill}(b) = \boxed{3 \ 0 \ \overline{2} \ \overline{2} \ \overline{1} \ \overline{1} \ 1 \ \emptyset}.$ 

We give a  $U'_q(\mathfrak{g})$ -crystal structure to  $T^{1,s}$  by following [10, 30] as the conditions for  $e_0$  and  $f_0$  are preserved under the filling map.

**Proposition 4.4** The filling map fill:  $B^{1,s} \to T^{1,s}$  given in Definition 4.2 is a  $U'_a(\mathfrak{g})$ -crystal isomorphism.

We also can show the following.

**Proposition 4.5** Let  $B = B^{1,s}$ . Then  $\Phi = \text{fill} \circ \iota$  with fill as in Definition 4.2 on highest weight elements.

680

*Rigged configurations of type*  $D_4^{(3)}$  *and the filling map* 

## 5 Virtualization Map

**Lemma 5.1** The virtualization map  $v: B^{1,s} \longrightarrow B^{2,s}$  for types  $D_4^{(3)} \longrightarrow D_4^{(1)}$  is given column-bycolumn by

| $1 \mapsto \boxed{\frac{1}{2}}$               | $2\mapsto \boxed{\frac{1}{3}}$                                   | $\boxed{3}\mapsto \boxed{\frac{2}{\overline{3}}}$              | $0\mapsto \frac{3}{\overline{3}}$       |
|-----------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|
| $\overline{3} \mapsto \overline{\frac{3}{2}}$ | $\boxed{\overline{2}} \mapsto \frac{\overline{3}}{\overline{1}}$ | $\boxed{\overline{1}} \mapsto \boxed{\overline{\overline{2}}}$ | $\emptyset \mapsto \boxed{\frac{1}{1}}$ |

Using Lemma 5.1 and the analogue of  $\Phi$  in type  $D_4^{(1)}$  [18, 25], we can show the following.

**Theorem 5.2** Consider a tensor product of KR crystals  $B = \bigotimes_{i=1}^{N} B^{1,s_i}$  of type  $D_4^{(3)}$ . The virtualization map v commutes with the map  $\Phi$ .

We need to define the *complement rigging map*  $\theta$ :  $\operatorname{RC}(B) \longrightarrow \operatorname{RC}(B_r)$  by sending  $(\nu, J) \mapsto (\nu, J')$ , where J' is obtained by  $x' = p_i^{(a)} - x$  for all labels x and  $B_r$  are the factors of B in reverse order. That is to say  $\theta$  maps each label x to its colabel. We can define  $\tilde{\delta} := \theta \circ \delta \circ \theta$ , and using the virtualization map, Proposition 4.5, and the results of [25], we can show the following.

**Lemma 5.3** We have  $\delta \circ \widetilde{\delta} = \widetilde{\delta} \circ \delta$ .

Using the results on the combinatorial *R*-matrix in [30], we can show the following.

**Lemma 5.4** Consider  $B = B^{1,s} \otimes B^{1,1}$ . We have  $\Phi^{-1} \circ R \circ \Phi$  is the identity map on RC(B).

Then following [28, Sec. 8], the map  $rs := \theta \circ ls \circ \theta$  preserves statistics using [30]. From Lemma 5.4, the *R*-matrix preserves statistics. Thus iterating rs and *R*-matrices, we preserve statistics to  $\bigotimes_{i=1}^{N'} B^{1,1}$ . Then we use the results of [23, 25] and Theorem 5.2 to obtain our main result.

**Theorem 5.5** Let  $B = \bigotimes_{i=1}^{N} B^{1,s_i}$  of type  $D_4^{(3)}$ . The map  $\Phi \colon \mathrm{RC}(B) \longrightarrow B$  is a  $U_q(\mathfrak{g}_0)$ -crystal isomorphism and  $\Phi \circ \theta$  sends cocharge to energy.

From Proposition 4.4, Lemma 5.1, Theorem 5.5, and the filling map for type  $D_n^{(1)}$  given in [18], we can show the following.

**Theorem 5.6** Let  $B = B^{1,s}$ . Then  $\Phi = \text{fill} \circ \iota$  with fill as in Definition 4.2 as  $U_q(\mathfrak{g}_0)$ -crystal morphisms.

Thus we can define a  $U'_q(\mathfrak{g})$ -crystal structure on  $\mathrm{RC}(B)$  by extending  $\Phi$  to be a  $U'_q(\mathfrak{g})$ -crystal isomorphism. Thus we have a special case in type  $D_4^{(3)}$  of the conjectures given in [27].

# 6 Extensions and questions

The  $U_q(\mathfrak{g}_0)$ -crystal decomposition of  $B^{2,s}$  and the highest weight rigged configurations will appear in the full version of this work. The author hopes to use this to determine the filling map for  $B^{2,s}$ .

There is a map lt:  $\operatorname{RC}(B^{2,1} \otimes B^*) \longrightarrow \operatorname{RC}(B^{1,1} \otimes B^{1,1} \otimes B^*)$  called *left-top* which adds a singular string of length 1 to  $\nu^{(1)}$ . In the full version, this is used to extend the  $U_q(\mathfrak{g}_0)$ -crystal isomorphism  $\Phi$  to tensor products also containing  $B^{2,1}$ .

Example 6.1 Continuing from Example 3.2, we obtain

$$\Phi(\nu, J) = \boxed{3} \otimes \boxed{2} \boxed{3} \otimes \boxed{\frac{1}{2}}.$$

The computations for the Kleber algorithm can be modified to determine the  $U_q(\mathfrak{g}_0)$ -crystal decomposition of  $B^{r,s}$  of type  $G_2^{(1)}$ . However there is a difficulty with determining what the map  $\delta$  should be. This would need to be overcome to define the filling map for type  $G_2^{(1)}$ .

There is a conjecture [22, Conj. 3.7] that we can realize  $B^{1,s}$  of type  $D_4^{(3)}$  as a virtual crystal in  $B^{1,s}$  of type  $D_4^{(1)}$ . Therefore obtaining a direct description of  $e_0$  and  $f_0$  on rigged configurations could lead to an answer to this conjecture using the results of [18]. The author hopes to have this description and prove this conjecture in this special case in the full version of this work.

# 7 Examples using Sage

The bijection  $\Phi$  and the rigged configurations have been implemented by the author in Sage [29]. We begin by setting up the Sage environment to give a more concise printing.

```
sage: RiggedConfigurations.global_options(display="horizontal")
```

We construct our the rigged configuration from Example 2.2 by specifying the partitions and corresponding labels.

```
sage: nu = RC(partition_list=[[4,1], [4]], rigging_list=[[3,1], [-2]]); nu
5[ ][ ][ ][ ]3 -2[ ][ ][ ]-2
1[ ]1
```

We apply the full bijection and print the output using Sage's ASCII art.

## Acknowledgements

The author would like to thank Masato Okado for a very valuable discussion and pointing out the reference [17]. The author would also like to thank Anne Schilling for reading a draft of this extended abstract and her mentorship.

## References

- Vyjayanthi Chari, On the fermionic formula and the Kirillov-Reshetikhin conjecture, Internat. Math. Res. Notices (2001), no. 12, 629–654. MR 1836791 (2002i:17019)
- [2] Vyjayanthi Chari and Andrew Pressley, *Quantum affine algebras and their representations*, Representations of groups (Banff, AB, 1994), CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 59–78. MR 1357195 (96j:17009)

- [3] \_\_\_\_\_, *Twisted quantum affine algebras*, Comm. Math. Phys. **196** (1998), no. 2, 461–476. MR 1645027 (99f:16041)
- [4] Ghislain Fourier, Masato Okado, and Anne Schilling, Kirillov-Reshetikhin crystals for nonexceptional types, Adv. Math. 222 (2009), no. 3, 1080–1116. MR 2553378 (2010j:17028)
- [5] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Y. Yamada, *Remarks on fermionic formula*, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 243–291. MR 1745263 (2001m:81129)
- [6] Goro Hatayama, Atsuo Kuniba, Masato Okado, Taichiro Takagi, and Zengo Tsuboi, *Paths, crystals and fermionic formulae*, MathPhys odyssey, 2001, Prog. Math. Phys., vol. 23, Birkhäuser Boston, Boston, MA, 2002, pp. 205–272. MR 1903978 (2003e:17020)
- [7] Jin Hong and Seok-Jin Kang, *Introduction to quantum groups and crystal bases*, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002. MR 1881971 (2002m:17012)
- [8] Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, *Affine crystals and vertex models*, Infinite analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 449–484. MR 1187560 (94a:17008)
- [9] Seok-Jin Kang and Kailash C. Misra, Crystal bases and tensor product decompositions of  $U_q(G_2)$ modules, J. Algebra **163** (1994), no. 3, 675–691. MR 1265857 (95f:17013)
- [10] M. Kashiwara, K. C. Misra, M. Okado, and D. Yamada, *Perfect crystals for*  $U_q(D_4^{(3)})$ , J. Algebra **317** (2007), no. 1, 392–423. MR 2360156 (2009b:17035)
- [11] Masaki Kashiwara, Crystalizing the q-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), no. 2, 249–260. MR 1090425 (92b:17018)
- [12] \_\_\_\_\_, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118 (93b:17045)
- [13] Masaki Kashiwara and Toshiki Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295–345. MR 1273277 (95c:17025)
- S. V. Kerov, A. N. Kirillov, and N. Yu. Reshetikhin, *Combinatorics, the Bethe ansatz and representations of the symmetric group*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), no. Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII, 50–64, 193. MR 869576 (88i:82021)
- [15] A. N. Kirillov and N. Yu. Reshetikhin, *The Bethe ansatz and the combinatorics of Young tableaux*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) **155** (1986), no. Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII, 65–115, 194. MR 869577 (88i:82020)

- [16] Anatol N. Kirillov, Anne Schilling, and Mark Shimozono, A bijection between Littlewood-Richardson tableaux and rigged configurations, Selecta Math. (N.S.) 8 (2002), no. 1, 67–135. MR 1890195 (2003a:05151)
- [17] Bin Mohammad Mahathir, Soliton cellular automata constructed from a  $U_q(\mathfrak{g})$ -Crystal  $B^{n,1}$  and Kirillov-Reshetikhin type bijection for  $U_q(E_6^{(1)})$ -Crystal  $B^{6,1}$ , Thesis (Ph.D.)–Osaka University, 2012.
- [18] Masato Okado, Reiho Sakamoto, and Anne Schilling, *Affine crystal structure on rigged configurations of type*  $D_n^{(1)}$ , J. Algebraic Combin. **37** (2013), no. 3, 571–599. MR 3035517
- [19] Masato Okado and Nobumasa Sano, *KKR type bijection for the exceptional affine algebra*  $E_6^{(1)}$ , Algebraic groups and quantum groups, Contemp. Math., vol. 565, Amer. Math. Soc., Providence, RI, 2012, pp. 227–242. MR 2932429
- [20] Masato Okado, Anne Schilling, and Mark Shimozono, A crystal to rigged configuration bijection for nonexceptional affine algebras, Algebraic combinatorics and quantum groups, World Sci. Publ., River Edge, NJ, 2003, pp. 85–124. MR 2035131 (2005b:17037)
- [21] \_\_\_\_\_, Virtual crystals and fermionic formulas of type  $D_{n+1}^{(2)}$ ,  $A_{2n}^{(2)}$ , and  $C_n^{(1)}$ , Represent. Theory 7 (2003), 101–163 (electronic). MR 1973369 (2004f:17023)
- [22] \_\_\_\_\_, Virtual crystals and Kleber's algorithm, Comm. Math. Phys. 238 (2003), no. 1-2, 187–209. MR 1989674 (2004c:17034)
- [23] Reiho Sakamoto, *Rigged configurations and Kashiwara operators*, SIGMA Symmetry Integrability Geom. Methods Appl. **10** (2014), Paper 028, 88.
- [24] Ben Salisbury and Travis Scrimshaw, A rigged configuration model for  $B(\infty)$ , J. Combin. Theory Ser. A 133 (2015), 29–57.
- [25] Anne Schilling, A bijection between type  $D_n^{(1)}$  crystals and rigged configurations, J. Algebra **285** (2005), no. 1, 292–334. MR 2119115 (2006i:17025)
- [26] \_\_\_\_\_, Crystal structure on rigged configurations, Int. Math. Res. Not. (2006), Art. ID 97376, 27. MR 2211139 (2007i:17021)
- [27] Anne Schilling and Travis Scrimshaw, Crystal structure on rigged configurations and the filling map for non-exceptional affine types, Electron. J. Combin. 22 (2015), no. 1, Research Paper 73, 56.
- [28] Anne Schilling and Mark Shimozono, X = M for symmetric powers, J. Algebra **295** (2006), no. 2, 562–610. MR 2194969 (2007a:17025)
- [29] W. A. Stein et al., *Sage Mathematics Software (Version 6.4)*, The Sage Development Team, 2014, http://www.sagemath.org.
- [30] Daisuke Yamada, Scattering rule in soliton cellular automaton associated with crystal base of  $U_a(D_4^{(3)})$ , J. Math. Phys. **48** (2007), no. 4, 043509, 28. MR 2319903 (2008d:17025)