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Non-commutative Frobenius characteristic of
generalized parking functions
Application to enumeration

Jean-Baptiste Priez: and Aladin Virmaux;

LRI, Université Paris-Sud, Orsay, France

Abstract. We give a recursive definition of generalized parking functions that allows them to be viewed as a species.
From there we compute a non-commutative characteristic of the generalized parking function module and deduce some
enumeration formulas of structures and isomorphism types. We give as well an interpretation in several bases of non
commutative symmetric functions. Finally, we investigate an inclusion-exclusion formula given by Kung and Yan.

Résumé. Nous donnons une définition récursive des fonctions de parking généralisées nous permettant de munir
ces dernières d’une structure d’espèce. Nous utilisons ce point de vu pour donner une caractéristique de Frobenius
non-commutative du module des fonctions de parking généralisées que nous appliquons afin de donner de nombreuses
formules d’énumération de structures et de type d’isomorphismes, ainsi qu’une interprétation dans plusieurs bases des
fonctions symétriques non commutatives. Enfin, nous étudions une formule d’inclusion-exclusion provenant de Kung
et Yan.

Keywords: parking function, species, non-commutative symmetric functions

Introduction
Parking functions were introduced in [KW66] to model hashing problems in computer science and appear
in many different contexts in combinatorics. Generalized parking functions were introduced by Stanley
and Pitman [SP02]. Shortly after, Kung and Yan showed that the Gonc̆arov polynomials form a natural
basis to manipulate generalized parking functions and stated numerous enumeration formulas [KY03].

The (linear span of the) set Fn of parking functions of length n is naturally a module over the symmetric
group Sn acting on positions. In [NT08] Novelli and Thibon observed that Fn is also a module over the
0-Hecke algebra Hnp0q. This allows us to lift canonically the Frobenius characteristic of Fn, which lives
in the algebra of symmetric functions, as a non commutative Frobenius characteristic in the algebra of non
commutative symmetric functions. They then apply this technology to the non commutative Lagrange
inversion. Implicit in the calculations of [NT08] is the use of a recursive definition of parking functions to
derive functional equations on the Frobenius characteristic.
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In this paper we apply the same representation-theoretic approach to generalized parking functions and
derive enumeration formulas such as those of Kung and Yan. A key observation is that generalized parking
functions naturally form a species and that this species can be defined recursively.

This paper is organized as follows, beginning with background on species in Section 1, we the define
in Section 2 the species Fpχq of generalized parking functions. Then we will show that generalized
parking functions can be defined recursively, which naturally translates into a functional equation on Fpχq
(Theorem 2). We derive a closed-form expression for this species by expressing it in terms of the species E
of sets.

In Section 3 we apply the previous results to the computation of the non-commutative Frobenius
characteristic of the module of parking functions, expressed in the complete basis of non-commutative
symmetric functions (Theorem 3.4). From there, we derive new enumeration formulas, then express
chpFpχqq in the ribbon and Λ basis; the latter admits a nice combinatorial interpretation (Proposition 3.5).

Finally in Section 4 we state and prove an inclusion exclusion formula on the faces of a polytope for
generalized parking functions, giving a combinatorial interpretation of [KY03, Theorem 4.2].

1 Species
In this paper we use the theory of species [BLL98] to encode the notion of labeled and unlabeled parking
functions simultaneously. We recall some definitions and some classical operations for species.

Definition: A species P is an endofunctor of the category of sets with bijections into itself.
In other terms, P is a rule which produces

• a finite set PrU s, for any finite set U , • a function Prσs, for any bijection σ : U Ñ V .

This function Prσs satisfies the functoriality conditions:
Prτ ˝ σs “ Prτ s ˝ Prσs ; PrIdU s “ IdPrUs ,

for any bijections σ : U Ñ V and τ : V ÑW , and with the identity map IdU : U Ñ U .
Elements of PrU s are called the P-structures on U and functions Prσs are called the transports of

P-structures along σ. Two structures f P PrU s and g P PrV s have the same isomorphism type if there is a
bijection σ : U Ñ V such that Prσspfq “ g. We denote Pn the species P restricted to sets of cardinality n.

Characteristic species The species 1 is 1rU s “ tHu if U “ H andH in otherwise.

Species of sets The species of sets E is defined by ErU s “ tUu, for any finite set U (endowed with the
trivial action U ÞÑ σpUq for any bijection σ : U Ñ V and any finite set U ).

Many operations on species allows a direct translation in terms of generating series: addition, multiplica-
tion, substitution, etc. These operations constitute combinatorial analogs of the usual operations on series.
Here we will only use addition and multiplication. In the sequel, let P and Q be two species.

Addition The sum of P and Q, noted P` Q, is defined by:

pP` QqrU s “ PrU s \ QrU s ; pP` Qqrσspfq “

#

Prσspfq if f P PrU s,
Qrσspfq if f P QrU s,

for any finite set U , any bijection σ : U Ñ V and any f P pP` QqrU s.
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Product Similarly the product of species of P and Q, noted P ¨ Q defines ordered pairs of structures
f “ pg, hq:

pP ¨ QqrU s “
ÿ

S\T“U

PrSs ˆ QrT s pP ¨ Qqrσspfq “ pPrσgspgq, Qrσhsphqq ,

with σg (respectively σh) the restriction of σ to the underlying set of the P-structure g (resp. Q-structure h).
We denote Pn the product of P with itself n times: Pn “ P ¨ ¨ ¨ Pn´1 (with P1 “ P and P0 “ 1).

2 Parking functions
A parking function on finite set U (of cardinality u) is a function f : U Ñ N` such that #f´1prksq ě k,
for any k P rus. The generalization introduced in [SP02] modifies the condition. Let χ : N` Ñ N be a
non-decreasing sequence; the function f : U Ñ N is a χ-parking function if #f´1prχ pkqsq ě k, for any
k P rus.

Remark 2.1: The usual parking functions are χ-parking functions with χ : i ÞÑ i, the identity map.

For the following, it will be more convenient to use another equivalent definition. A (generalized) parking
function f : U Ñ N` may be described as an ordered sequence of sets pQiqiPN` where Qi “ f´1piq.
From this definition we remark that the isomorphism types (unlabeled structures) of generalized parking
functions are (generalized) Dyck paths, namely a staircase walk under a discrete curve χ. Formally this
defines a species:

Definition 2.2: The species of χ-parking functions is:
• for any finite set U , the set of all sequences pQiqiPN` of disjoint subsets of U such that

χpkq
ÿ

i“1

#Qi ě k for any 1 ď k ď u , (1)

• for any bijection σ : U Ñ V , the relabeling action is pQiqi ÞÑ pσpQiqqi (for any χ-parking function
on U ).

This viewpoint on generalized parking functions in terms of sequences reveals a recursive definition. A
simple way to put forward the recurrence is to view a generalized parking function pQiq as a decorated
path/staircase walk defined by: the first tread (horizontal step) goes to p#Q1, 1q and is decorated by Q1.
The second tread decorated by Q2 starts at p#Q1, 1q and goes to p#pQ1 YQ2q, 2q. The third starts where
the second ends, goes to p#pQ1 YQ2 YQ3q, 3q and is decorated by Q3, etc. (see Example 1).

From this graphic representation it is easy to notice that a χ-parking function pQiq on U is either a
sequence of empty sets if U “ H, or a sequence of sets pQiqiPrχp1qs of union S Ď U , concatenated
with another generalized parking function on UzS defined from another non-decreasing function ψs (See
Example 2). This new map is defined by a shift of χ characterized by the cardinality s of S:

ψs pmq “ χ ps`mq ´ χ p1q .

In the following, we will implicitly denote by ψn the shift of χ by n.

2.1 Recursive definition
The recursive splitting described earlier involves a natural constructive definition of the χ-parking functions
species in terms of species operations based on the species of sets E.
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Example 1: Let χ be the sequence 2, 2, 3, 5, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, . . . and it is pictured
in red. Let pQiq “ ptd, f,mu, tgu, ta, hu,H, tc, e, j, k, n, pu,H,H,H, tb, i, l, o, q, r, s, tu,Hq be a χ-
parking function on ta, b, c, ¨ ¨ ¨ , tu. The parking function is represented by the decorated blue path.

χ

td,f,mu

tgu

ta,hu

H

tc,e,j,k,n,pu

H

H

H

tb,i,l,o,q,r,s,tu

H

Theorem 2.3: The species of χ-parking functions is isomorphic to the species Fpχq recursively defined as
Fpχq “ pEχp1qq0 `

ÿ

ně1

pEχp1qqn ¨ Fpψnq. (2)

PROOF: A generalized parking function pQiq is an infinite sequence of disjoint subsets of a finite set U
and with Qi “ H for i ą χ puq, so pQiq may be seen as a sequence of length χ pu` 1q. The relabeling
action is trivially the same. By induction, any Fpχq-structures satisfies the generalized parking functions
condition (1). Finally, any χ-parking functions on U can be divided into factors Dp “ pQiqi with
χpp´ 1q ă i ď χppq for any p P rus. By induction again, each factor Dp corresponds to a structure on the
left term of the sum 2, (pEψαp p1qqβp ) with αp “ βp´1.

Thanks to species theory [BLL98], this constructive definition of the χ-parking functions gives automati-
cally a cycle index series: the series of (commutative) Frobenius characteristic of the natural symmetric
group action on Fnpχq. Furthermore, the terminal elements of our grammar pEkqn are well-known to be
characterized by the permutational 0-Hecke modules.

2.2 Closed-form equivalent definition
In order to give a closed-form expression of the species Fpχq one needs to understand the map ψn
according to χ. Tracking the recursion of the definition is only about following the different choices of n
in (2). This recursive definition is mainly defined by the map ψn of equation (2). When expanding Fpχq,
we remark that the map evolves as follows:

ψn : m ÞÑ χpm` nq ´ χp1q

ψ1n1
: m ÞÑ χpm` n` n1q ´ χp1` n1q

ψ2n2
: m ÞÑ χ pm` n` n1 ` n2q ´ χ p1` n1 ` n2q

...



Generalized parking functions 737

Example 2: Let pQiq be the χ-parking function defined in Example 1; it is the concate-
nation of the sequence of the two first sets ptd, f,mu, tguq and the ψ-parking function
pta, hu,H, tc, e, j, k, n, pu,H,H,H, tb, i, l, o, q, r, s, tu,Hq on ta, b, c, ¨ ¨ ¨ , tuztd, f, g,mu with ψ the
sequence 3, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, . . . In other terms we have ψ pmq “ χ pm` 4q ´ χ p1q.

χ

td, f, mu

tgu

ta, hu

H

tc, e, j, k, n, pu

H

H

H

tb, i, l, o, q, r, s, tu

H

“ ptd, f,mu, tguq ¨

ψ

ta, hu

H

tc, e, j, k, n, pu

H

H

H

tb, i, l, o, q, r, s, tu

H

On the other hand each ψn is always called with m “ 1 by definition and each n is always a positive
integer. So the sequence pn, n1, n2, ¨ ¨ ¨ q is finite sequence of positive integer: a composition π.

Definition 2.4: Let π “ π1 ¨ ¨ ¨πk be a composition of n. The map Υ is defined by:

Υpχ;π, iq “

#

χ p1q if i “ 1,

χ p1` πpi´ 1qq ´ χ p1` πpi´ 2qq otherwise.
(3)

with πpiq “ π1 ` ¨ ¨ ¨ ` πi the partial sum of the first i parts of π.

By expanding the recurrence (2) of theorem 2.3 we have:

Proposition 2.5:

Fpχq “ 1`
ÿ

ně1

Fnpχq with Fnpχq “
ÿ

π|ùn

`pπq
ź

i“1

´

EΥpχ;π,iq
¯

πi
. (4)

PROOF: The exact formula obtained is

Fpχq “ pEχp1qq0 `
ÿ

ně1

¨

˝

ÿ

π|ùn

`pπq
ź

i“1

´

EΥpχ;π,iq
¯

πi

˛

‚¨

´

Eχpn`1q´χpnq
¯

0
.

It can be simplified by turning all pending empty sets at the end into the species 1 (remember that 1 is a
neutral element for product of species).

3 Non-commutative Frobenius characteristic of Fpχq

In species theory, there are many combinatorial operations on structures, which are translated on operations
in the cycles index series. In the case of generalized parking functions, the functional equation/grammar (2)
is terminating on (and only on) finite sequences of sets. Those structures are well-known to have a more
expressive non-commutative Frobenius characteristic.
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We recall those characteristic in the first subsection, we then give the non-commutative characteristic
of Fpχq in bases: pSπq the completes, pRπq the ribbons Schur and pΛπq the elementaries of the non-
commutative symmetric functions. (Refer to [GKL`95] for an overview on non-commutative symmetric
functions.)

3.1 Species of sequence of k-sets

In this subsection we focus on the species
`

EΥpχ;π,iq
˘

πi
»

`

Ek
˘

n
. In [KT97], the authors lift the right

action of Sn on rksn by considering the natural right action of Hnp0q on Crksn. In the same way, we
consider here the natural action of Hnp0q on the linearized species CEkrns. Using species theory notations,
we translate some classical results appearing in [KT97] (and [NT08]).

Let Q “ pQiqiPrks be a structure in Ekrns that is a sequence of k disjoint subsets which covers the finite
set rns; more generally we could replace rns by any finite set U endowed with a fixed total order so that
the elementary transpositions are well defined. The Hecke algebra Hnp0q acts on CEkrns on the left by
permuting the elements. By abuse of notations we note Q´1piq “ k if i P Qk. For q “ 0, the action of Ti
is defined by:

Q ¨ Ti “

$

&

%

σipQq if Q´1piq ă Q´1pi` 1q
0 if Q´1piq “ Q´1pi` 1q
´Q otherwise,

(5)

where σi is the corresponding elementary transposition (σi is defined as the bijection with i ÞÑ i ` 1,
i` 1 ÞÑ i and stays fixed otherwise ); for example p13| ¨ |2q ¨ T1 “ p23| ¨ |1q.

The action of any element Ti ofHnp0q onQ is either 0 or a rearrangement ofQ. The orbits (isomorphism
types) are indexed by decompositions d “ pd1, . . . , dkq of n in k parts with di “ #Qi, that is generalized
compositions including null parts. The rearrangements of Q form a basis of an Hnp0q-projective module
M whose non-commutative characteristic is chpMq “ Sπ, where π is the underlying composition of d
obtained by stripping away null parts.

The non-commutative characteristic of CEkrns is therefore

chpCEkrnsq “
ÿ

π|ùn

MπpkqS
π “

ÿ

π|ùn

ˆ

k

`pπq

˙

Sπ “ SnpkAq , (6)

where the binomial coefficients account for the number of ways to insert k´ `pπq empty sets in a sequence
of `pπq non-empty sets. The non-commutative complete function Sπ is used here as a way to encode the
relabeling action of a sequence of `pπq-sets with π1 elements in the first set, π2 elements in the second
set etc. In the enumeration formula of structures (7), SπpEq is specialized into the multinomial

`

n
π1,¨¨¨ ,πj

˘

(the reader may consult the specialization SπpEq in [HLNT11]). In terms of Hopf algebras operations
SnpkAq is equivalent to the Adams operations which iterate k times the coproduct and then the product:
µk ˝∆kpSnq with ∆k “ p∆b Idk´1bq ˝∆k´1 and µk “ µ ˝ pIdb µk´1q.

Ek-structures enumeration From the characteristic of permutation representations, we recover easily
the enumeration formula of pEkqn-structures (or words on rks of length n):

ekpnq “
ÿ

π|ùn
π“π1¨¨¨πj

ˆ

k

j

˙ˆ

n

π1, ¨ ¨ ¨ , πj

˙

“ kn . (7)
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Ek-isomorphism types enumeration Similarly we recover the enumeration formula of pEkqn-isomorphism
types (or non-decreasing words) by specializing Sπ ÞÑ 1:

ẽkpnq “
ÿ

π|ùn

ˆ

k

`pπq

˙

“

ˆ

n` k ´ 1

k ´ 1

˙

. (8)

3.2 Complete basis formula
Using (6) and the recursive definition (2) we naturally obtain a recursive formula for the non-commutative
Frobenius characteristic series of the χ-parking functions:

chpFpχqq “ 1`
ÿ

ně1

chpCEχp1qrnsqchpFpψnqq

“ 1`
ÿ

ně1

Snpχ p1qAqchpFpψnqq .

By specializing Sπ to
`

n
π1,¨¨¨ ,πk

˘

and to 1, we obtain (new) formulas to enumerate Fpχq-structures and
types. Namely from (7), we obtain the following recursive enumeration formula for the number fpχ;nq of
Fpχq-structures on a set of cardinality n:

fpχ;nq “
n
ÿ

k“1

ˆ

n

k

˙

χ p1q
k
fpψk;n´ kq (9)

with fpχ; 0q “ 1. Similarly, we derive from (8) the number of isomorphism types:

f̃pχ;nq “
n
ÿ

k“1

ˆ

n´ χp1q ´ 1

χp1q ´ 1

˙

f̃pψk;n´ kq , (10)

also with f̃pχ; 0q “ 1. From Proposition 2.5, we have a non-recursive version of chpFpχqq:
Lemma 3.1:

chpFnpχqq “
ÿ

π|ùn

`pπq
Ñź

i“1

Sπi pΥpχ;π, iqAq .

In §3.1 we stated that SnpkAq is given by the non-commutative Cauchy identity (6). This characteristic,
expressed as a sum of products of Adams operations according to χ, lifts trivially [KY03, Corollary 5.6] in
non-commutative symmetric functions:

Proposition 3.2: Let χ, ψ be two non-decreasing functions such that χpmq “ αψpmq, for any m P N`.
chpFpχqq “ chpFpψqqpαAq .

By expanding the formula of Lemma 3.1 we now have a new sum over compositions, where terms are
products of binomials on parts of each composition (see Table 3). To get rid of any specialization alphabet,
we first need to refine Υ into Ψτ ; namely for π a composition of n and τ a composition of `pπq we set

Ψτ pχ;π, iq “

#

χ p1q if i “ 1,
χ p1` πpτpiqqq ´ χ p1` πpτpi´ 1qqq otherwise .

Remark 3.3: Ψp1,...,1q “ Υ.

The non-commutative characteristic chpFnpχqq of Lemma 3.1 can now be expanded into the following
theorem:
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χzn 0 1 2 3 4 5 6 7 OEIS
m 1 1 3 16 125 1296 16807 262144 A000272

m` 1 1 2 8 50 432 4802 65536 1062882 A089104
2m 1 2 12 128 2000 41472 1075648 33554432 A097629

m2 `m 1 2 20 512 25392 2093472 260555392 45819233280 A103353

Tab. 1: Some enumerations of Fpχq-structures for sets of cardinality n “ 0 to 7.

χzn 0 1 2 3 4 5 6 7 8 OEIS
m 1 1 2 5 14 42 132 429 1430 A000108

m` 2 1 3 9 28 90 297 1001 3432 11934 A000245
2m 1 2 7 30 143 728 3876 21318 120175 A006013

rm`1
3 s 1 1 1 2 3 4 9 15 22 A124753

Tab. 2: Some enumerations of Fpχq-types for n “ 0 to 8.

Theorem 3.4: The non-commutative characteristic of Fnpχq is given by:

chpFnpχqq “
ÿ

π|ùn

γπS
π , with γπ “

ÿ

τ |ù`pπq

`pτq
ź

i“1

ˆ

Ψτ pχ;π, iq

τi

˙

. (11)

Using again Proposition 2.5, from (9) and (10), we get the following non recursive enumeration formula
for χ-structures and isomorphism types:

fpχ;nq “
ÿ

π|ùn
π“π1¨¨¨πk

ˆ

n

π1, ¨ ¨ ¨ , πk

˙ k
ź

i“1

Υpχ;π, iqπi , f̃pχ;nq “
ÿ

π|ùn

`pπq
ź

i“1

ˆ

n´Υpχ;π, iq ´ 1

Υpχ;π, iq ´ 1

˙

.

Example 3: The first values of the non-commutative characteristic of Fpm2 ´m` 1q are given by:
chpF1pm

2 ´m` 1qq “ S1 , chpF2pm
2 ´m` 1qq “ 2S11 ` S2

chpF3pm
2 ´m` 1qq “ 9S111 ` 2S12 ` 6S21 ` S3

chpF4pm
2 ´m` 1qq “ 70S1111 ` 9S112 ` 21S121 ` 2S13 ` 51S211 ` 6S22 ` 12S31 ` S4

We now investigate how the formula of Theorem 3.4 translates in other natural bases of non-commutative
functions.

3.3 Ribbon Schur basis formula

Recall that the change of basis from the complete basis to the ribbon Schur functions basis pRπq is given
by Sπ “

ř

τĺπRτ , where ĺ denotes the reverse refinement order.

Example 4: The compositions τ of 5 such that τ ĺ 212 are 212, 32, 23 and 5.

http://oeis.org/A000272
http://oeis.org/A089104
http://oeis.org/A097629
http://oeis.org/A103353
http://oeis.org/A000108
http://oeis.org/A000245
http://oeis.org/A006013
http://oeis.org/A124753
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chpF0pχqq “ 1 , chpF1pχqq “ a1S
1 , chpF2pχqq “ a1S

2 `

„ˆ

a1

2

˙

` a1a2



S11

chpF3pχqq “ a1S
3 `

„ˆ

a1

2

˙

` a1pa2 ` a3q



S21 `

„ˆ

a1

2

˙

` a1a2



S12

`

„ˆ

a1

3

˙

`

ˆ

a1

2

˙

pa2 ` a3q ` a1

ˆ

a2

2

˙

` a1a2a3



S111

Tab. 3: The first values of the non-commutative characteristic with χ pmq “ am`χ pm´ 1q and χ p1q “ a1

in the complete basis.

This change of basis gives the formula:

chpFnpχqq “
ÿ

π|ùn

˜

ÿ

πĺτ

γτ

¸

Rπ

Example 5: The first values of the non-commutative characteristic of Fp2m´ 1q are given by:
chpF1p2m´ 1qq “ R1 , chpF2p2m´ 1qq “ 2R11 ` 3R2

chpF3p2m´ 1qq “ 5R111 ` 7R12 ` 9R21 ` 12R3

chpF4p2m´ 1qq “ 14R1111 ` 19R112 ` 23R121 ` 30R13 ` 28R211 ` 37R22 ` 43R31 ` 55R4

The coefficients of R1n are (as excepted) Catalan numbers [A000108], and the coefficients of Rn are
(less excepted) the number of non-crossing trees with n nodes [A001764].

3.4 Lambda basis formula
Recall that both bases pSπq and pΛπq are multiplicative and related by the formula Sπ “

ř

τĺπp´1q`pτq´`pπqΛτ .
Furthermore, the change of base from ribbon pRπq to lambda pΛπq is given by Rπ “

ř

sτĺπ˜p´1q`pπ q̃´`pτqΛτ

(where sτ is the complement of τ and π̃ is the conjugate of π).
It follows that, in the Lambda basis, the characteristic of the module of parking functions is given by an

alternating sum:

chpFnpχqq “
ÿ

π|ùn

¨

˝

ÿ

τ |ù`pπq

p´1qn´`pτq
`pτq
ź

i“1

ˆ

χ p1` πpτpi´ 1qqq

τi

˙

˛

‚Λπ .

Example 6:
chpF1pm

2 ´m` 1qq “ Λ1, chpF2pm
2 ´m` 1qq “ 3Λ11 ´ Λ2

chpF3pm
2 ´m` 1qq “ 18Λ111 ´ 3Λ12 ´ 7Λ21 ` Λ3

chpF4pm
2 ´m` 1qq “ 172Λ1111 ´ 18Λ112 ´ 36Λ121 ` 3Λ13 ´ 70Λ211 ` 7Λ22 ` 13Λ31 ´ Λ4

The coefficients once again admit a combinatorial interpretation.

Proposition 3.5: Let π be a composition of n. The coefficient of rΛπs is the number of non-decreasing
χ-parking functions constant on each part of π, up to the sign.

http://oeis.org/A000108
http://oeis.org/A001764
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Example 7: The coefficient rΛπschpF4pm
2 ´m` 1qq of the previous example is 7; this is the number

of non-decreasing parking functions that are constant on each part of the composition 22: p1234| ¨ | ¨ | ¨ ¨ ¨ q,
p12|34| ¨ | ¨ ¨ ¨ q, . . . , p12| ¨ | ¨ | ¨ | ¨ | ¨ |34| ¨ ¨ ¨ q.

4 An inclusion-exclusion formula
Originally we expected the formula

fpχ;nq “
ÿ

π|ùn
π“π1¨¨¨πk

p´1qn´k
ˆ

n

π1, . . . , πk

˙ k
ź

i“1

χ p1` πpi´ 1qq
πi [KY03, Theorem 4.2]

to be the specialization at Λπ ÞÑ
`

n
π1,¨¨¨ ,πk

˘

of the non commutative characteristic of the module of
generalized parking functions. This it turned out is not to be the case, therefore the aim of this section is to
investigate this formula, in particular to try to find a representation theoretic interpretation of it.

First we need a few definitions; given an ordered alphabet A, recall that the standardization of a
word w P A˚ is the permutation obtained by scanning iteratively w from left to right and relabeling
1, 2, . . . , n the occurrences of the smallest letters. For any non-decreasing sequence χ of integers, the
χ-standardization of a word w is the word obtained by applying the same algorithm and then relabeling
with χp1q, χp2q, ¨ ¨ ¨ , χpnq. The word (in fact a generalized parking function) obtained is no longer a
permutation. We denote by Stdχ this operator.

Example 8: Let χ be the Catalan numbers 1, 1, 2, 5, 14, 42, ¨ ¨ ¨ we have,
Stdχp1, 4, 11, 1, 31, 1q “ p1, 5, 14, 1, 42, 2q.

Definition 4.1: A χ-parking function pQiq of size n is primitive if the following is verified:

Qi ‰ H ðñ i “ χ

¨

˝1`
ÿ

jăχpiq

#Qj

˛

‚.

We denote by Pn´1 the set of primitive parking functions of size n.

In other words, in the sorted of f , all vertical paths join χ.
An obvious bijection between primitive parking functions and ordered set partitions of n is obtained

by considering the sequence of non empty Qi in the same order. The inversion set of a primitive parking
function f is : Invpfq “ tpi, jq : i ă j and fpiq ě fpjqu.

Example 9: Let χ the sequence of prime numbers, the function p13, 2, 3, 11, 3, 3q is primitive and its
associated ordered set partition is t2u|t3, 5, 6u|t4u|t1u. The inversion set of f is

Invpfq “ tp1, 2q, p1, 3q, p1, 4q, p1, 5q, p1, 6q, p3, 5q, p3, 6q, p4, 5q, p4, 6q, p5, 6qu.

The collection of ordered set partitions admits a nice representation as indexing the faces of a polytope
(see [Zie95]). In this polytope the faces of dimension i are the ordered set partitions with n´ i parts. In
particular the ordered partition with only one part corresponds to the only face of dimension n´ 1.

Through the aforementioned bijection we may alternatively label the faces of this polytope with the χ
primitive parking functions; the dimension of the face indexed by f is then dpfq “ n´ Imgpfq.

We name Pn´1 the n´ 1 dimensional polytope of primitive parking function of size n. If χ is strictly
increasing this is the permutohedron. Generalized parking functions (on rns) can naturally be endowed
with the product order inherited from Nn: namely f ď g if and only if @i ď n, fpiq ď gpiq. Seeing each
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1243 2143

1133

1423 1324 1234 2134 3124 4123

1143

1233 2133

1323 1224 1134 2124 3123

Tab. 4: The set tp P Pn´1 : p ě fu for χ “ id and f “ p1123q. Arrows represent a possible involution.

face ef of Pn´1 as the sum of parking functions lower than f , our main theorem states that, by doing an
inclusion-exclusion process on the dimension of the faces, we obtain each generalized-parking function
once and only once.

Theorem 4.2: In the vector space CFnpχq one has
ÿ

fPFnpχq

f “
ÿ

fPPn´1

p´1qdpfq
ÿ

pďf

p .

More combinatorially, one can directly count χ-parking functions from the previous theorem:

Corollary 4.3 ([KY03, Theorem 4.2]):

fpχ;nq “
ÿ

QPFnpχq
Q primitive

p´1qdpQq
n
ź

i“1

χ piq
#Qχpiq ,

We prove it by using the signed involution principle. The aim is, for any χ-parking function f of size n, to
give an involution If from tp P Pn´1 : p ě fu into itself such that:

If ppq “
"

p if p “ Stdχpfq
y with dpyq “ dpfq ˘ 1 otherwise.

Without loss of generality we can suppose that f is non-decreasing so that Stdχpfq “ pχp1q, ¨ ¨ ¨χpnqq.
The involution is defined implicitly from the inversion set of p; it is Stdχpfq if Invppq “ H and another
primitive parking function of another dimension but with same inversion set otherwise. The key ingredient
is given a primitive parking function p with inversion set Invppq “ I , to understand the set

Invp “ tq P Pn´1 : Invpqq “ Invppq and q ě pu.

For a parking function f P Pn´1 the dimension is an invariant of the symmetric group action on the indices,
as well as the cardinality of Invp. We can then state the following lemma:

Lemma 4.4: let I be an inversion set and h ě f a primitive χ-parking function with inversion I of
maximum dimension. The generating series GIpfq of the dimensions of the faces with inversion set I is

GIpfq “
ÿ

Invppq“I
pěf

xdppq “ p1` xqdphq.

The construction of fx is straightforward from Lemma 4.4, which completes the proof of Theorem 4.2. By
adding the number of χ-parking functions in each dimension we get the following formula:

Proposition 4.5:
0 “

n
ÿ

k“0

p´1qn´k`1

ˆ

n

k

˙

fpχ; kqχpk ` 1qn´k.
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Frobenius characteristic investigation
In the previous subsection the formula of Theorem 4.2 of [KY03] is expressed combinatorially as an alter-
nating sum. This formula is the result of the exponential specialization of the following non-commutative
characteristic:

Gpχ;nq “
ÿ

π|ùn

p´1qn´`pπq
`pπq
ź

i“1

χ p1` πpi´ 1qqΛπ.

Unfortunately this expression is not positive when expanded on the R basis. It’s therefore not the
characteristic of an indecomposable Hnp0q-module. Nevertheless it might still be interpretable as the
characteristic of some exact sequence of Hnp0q-modules.
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