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The (m,n)-rational q, t-Catalan polynomials
for m = 3 and their q, t-symmetry

Ryan Kaliszewski† and Huilan Li‡
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Abstract. We introduce a new statistic, skip, on rational (3, n)-Dyck paths and define a marked rank word for each
path when n is not a multiple of 3. If a triple of valid statistics (area, skip, dinv) are given, we have an algorithm
to construct the marked rank word corresponding to the triple. By considering all valid triples we give an explicit
formula for the (m,n)-rational q, t-Catalan polynomials when m = 3. Then there is a natural bijection on the triples
of statistics (area, skip, dinv) which exchanges the statistics area and dinv while fixing the skip. Thus we prove the
q, t-symmetry of (m,n)-rational q, t-Catalan polynomials for m = 3.

Résumé. Nous introduisons une nouvelle statistique, le skip, sur les chemins de (3, n)-Dyck rationnels et définissons
le mot de rang marqué pour chaque chemin quand n n’est pas un multiple de 3. Si un triplet valide de statistiques (aire,
skip, dinv) est donné, nous avons un algorithme pour construire le mot de rang marqué correspondant au triplet. En
considérant tous les triplets valides, nous donnons une formule explicite pour les polynômes de q, t-Catalan (m,n)-
rationnels quand m = 3. Enfin, il existe une bijection naturelle sur les triplets de statistiques (aire, skip, dinv)) qui
échange les statistiques aires et dinv en conservant le skip. Ainsi, nous prouvons la q, t-symétrie des polynômes de
q, t-Catalan (m,n)-rationnels pour m = 3.

Keywords: Dyck path, Catalan number, rank word

1 Introduction
In the early 1990’s Garsia and Haiman introduced an important sum of rational functions in q, t, the classic
q, t-Catanlan polynomial Cn(q, t), which has since been shown to have interpretations in terms of alge-
braic geometry and representation theory. Now it is well-known that the classic q, t-Catalan polynomial
is

Cn(q, t) =
∑
π

qdinv(π)tarea(π) (1)

=
∑
π

qarea(π)tbounce(π), (2)
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where the sums are over all Dyck paths π from (0, 0) to (n, n) and (2) is due to Haglund (2003). Though
the symmetry problem of the classic q, t-Catalan polynomials has been solved through the use of Macdon-
ald polynomials, no bijective proof has been found, where the bijection means an involution on the set of
Dyck paths that exchanges (dinv, area) or (area,bounce). For an overview of the classical q, t-Catalan
polynomials and Dyck paths, see, Garsia and Haiman (1996), Garsia and Haglund (2002), Haglund et al.
(2005), and Haglund (2008).

Let m and n be coprime. An (m,n)-Dyck path is a path in m × n lattice which proceeds by north
and east steps from (0, 0) to (m,n) and which always remains weakly above the main diagonal y = m

n x.
The number of full cells between an (m,n)-Dyck path Π and the main diagonal is denoted area(Π). The
collection of cells above a Dyck path Π forms an English Ferrers diagram λ(Π). For any cell x ∈ λ(Π),
let leg(x) and arm(x) denote number of cells in λ(Π) which are strictly south or strictly east of x,
respectively. Then define dinv(Π) is the number of cells above the path Π satisfying

arm(x)

leg(x) + 1
<
m

n
<

arm(x) + 1

leg(x)
. (3)

The (m,n)-rational q, t-Catalan polynomial is

Cm,n(q, t) =
∑
Π

qdinv(Π)tarea(Π),

where the sum is over all (m,n)-Dyck paths. Note that for every (m,n)-Dyck path there is a complemen-
tary (n,m)-Dyck path with identical statistics. For example,
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Thus the (m,n)-rational q, t-Catalan polynomial is symmetric in the parameters m and n.
The classic q, t-Catalan polynomials correspond to the casesm = n+1. It is an open conjecture that the

(m,n)-rational q, t-Catalan polynomials are symmetric in q and t. Gorsky and Mazin (2014) have proven
the q, t-symmetry for the case when m ≤ 3 without giving an explicit formula for the polynomials. Also,
independently, Lee et al. (2014) have proven the q, t-symmetry when m ≤ 4.

Using the definition of Hikita (2012), parking functions and their statistics can be extended to the
(m,n)-rational case. Hikita (2012) defined polynomials

Hm,n(X; q, t) =
∑
PF

tarea(PF)qdinv(PF)Fides(PF)(X), (4)

where the sum is over all parking functions PF over all (m,n)-Dyck paths and the F are the (Gessel)
fundamental quasisymmetric functions indexed by the inverse descent composition of the reading word
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of the parking functions PF. When m = 2 or n = 2, the structure of Hikita’s polynomials have been
completely described by Leven (2014). Since, for each (m,n)-rational Dyck path there is a parking
function on that path with the same statistics as the underlying Dyck path, the (m,n)-rational q, t-Catalan
polynomial appears as the coefficient of F(1n) in the expansion of the Hikita’s polynomial Hm,n. Thus,
describing the structure of the (m,n)-rational q, t-Catalan polynomials is the first step to uncovering the
structure of the Hikita’s polynomials.

In this paper, we prove that

C3,n(q, t) =

bn/3c∑
s=0

∑
a,d≥s

a+s+d+1=n

qdta (5)

=

bn/3c∑
s=0

n−2s−1∑
a=s

qn−a−s−1ta (6)

and the q, t-symmetry, i.e.
C3,n(q, t) = C3,n(t, q). (7)

For each (3, n)-Dyck path, we define a marked rank word corresponding to the path and a new statistic
skip on the path or the marked rank word. If a triple of valid statistics area, skip and dinv are given, we
have an algorithm to construct a marked rank word corresponding to the triple. Then there is a natural
bijection on the triples of statistics (area, skip,dinv) which switched the statistics area and dinv. Thus
the symmetry in q, t is proved. Gorsky and Mazin (2014) use a construction similar to our rank words,
but the skip statistic in this paper only arises from the markings we place upon the words.

In Section 2, we introduce the notations, background and define the new statistic skip on (3, n)-Dyck
paths. In Section 3, we show that every (3, n)-Dyck path is uniquely determined by the triple of statistics
area, skip and dinv. We use this triple to construct an explicit formula for C3,n(q, t). The formula and
the uniqueness of the triple allows us to find a unique bijection on (3, n)-Dyck paths which switches the
area and dinv statistics while fixing skip. Therefore, the q, t-symmetry of (m,n)-rational q, t-Catalan
polynomials for m = 3 is proved.

2 Notation and Background
Suppose n is a non-negative integer that is not divisible by 3. Let L3,n be the finite Z-sublattice in the first
quadrant with n rows and 3 columns. We use coordinates to describe the location of each cell in L3,n by
first listing the column and then the row. Rows are labeled from bottom to top and columns are labeled
from left to right. So the lower-left corner of cell (1,1) rests on the origin. We fill each (a, b) cell in the
diagram by it’s rank: R(a, b) = −an+ 3(b− 1). If we denote a cell by a variable, x, then we will denote
the rank of x by rk(x).

The rank word of L3,n is a list of the positive ranks of L3,n in increasing order with those ranks in the
first column colored with subscript 1’s and those in the second column colored with subscript 2’s. The
rank word of the sublattice L3,n will be denoted by rk(L3,n).

Example 2.1 The rank word rk(L3,5) is [ 11 , 22 , 41 , 71 ] .
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One can think of the rank word as being composed of two interleaved sublists, one colored with 1’s
and the other with 2’s. Sublist 1 contains all of the positive integers that are less than 2n and equivalent
to 2n modulo 3, and sublist 2 contains all of the positive integers that are less than n and equivalent to n
modulo 3. Thus there are bn/3c entries with subscript 2 and b2n/3c entries with subscript 1. This means
that there are n− 1 entries in rk(L3,n).

The rank word of a (3, n)-Dyck path is the rank word of the underlying diagram, L3,n, with those
entries above the Dyck path are marked. In this paper we will mark entries by putting a box around them.

Example 2.2 If
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then
rk(Π) = [ 11 , 22 , 41 , 71 ] .

If Π is a (3, n)-Dyck path, define its skip as a collection of adjacent unboxed entries in the rank word
with one or more boxed entries to the right and left. In the above example, the 4 is a skip because the 2
and 7 are both in boxes. The 1 is not a skip because there are no boxed entries to the left. Define the skip
statistic of Π to be the total number of skips, denoted by skip(Π).

Example 2.3 Let
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This gives
rk(Π1) = [ 11 , 22 , 41 , 52 , 71 , 101 , 131 ]

rk(Π2) = [ 11 , 22 , 41 , 52 , 71 , 101 , 131 ] .

Therefore skip(Π1) is 2 because the entries 4 and 7 are each skips. However, skip(Π2) is only 1 be-
cause the 7 and 10 entries comprise a single skip. It is useful to confirm that for the Dyck paths above,
area(Π1) = 3, area(Π2) = 5, dinv(Π1) = 2, and dinv(Π2) = 1.

We will turn our discussion to the dinv statistic for the rest of this section. Note that the ranks in
rk(L3,n) only lie in the first and second columns of L3,n.

Proposition 2.4 Any cell in the second column that is above a (3, n)-Dyck path satisfies the inequality
(3), and thus contributes to the dinv.

Proof: As stated earlier, there are at most bn/3c cells above the path that lie in the second column. Let x
be one such cell. This means that arm(x) = 0 and leg(x) < n/3. Since arm(x) = 0 the left inequality in
(3) certainly holds, so we just need to show that 3 · leg(x) < n. But this is exactly what we just claimed.
2

Proposition 2.5 Let Π be a (3, n)-Dyck path. Any cell x in the first column and above Π that does not
satisfy the inequality (3) must satisfy one of the following:

arm(x) = 1 and leg(x) <
n

3
− 1, (8)

arm(x) = 0 and leg(x) >
n

3
. (9)

Proof: Let x be a cell in the first column above the path Π that does not satisfy the inequality (3). Then
arm(x) = 1 or arm(x) = 0.

Suppose arm(x) = 1. Then the inequality (3) becomes

1

leg(x) + 1
<

3

n
<

2

leg(x)
.

From the right inequality, then we have leg(x) < 2n
3 . As we previously discussed, there are never more

than b2n/3c positive entries above the path in the first column. So the right inequality is always satisfied.
Therefore, the left inequality does not hold, which is equivalent to leg(x) < n

3 − 1, which is line (8).
Suppose arm(x) = 0. Then the inequality (3) becomes

0

leg(x) + 1
<

3

n
<

1

leg(x)
,

so the left inequality is immediately satisfied. Therefore, the right inequality does not hold, which is
equivalent to leg(x) > n

3 , which is line (9).
2
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This proposition tells us that the only cells above the Dyck path that do not contribute to the dinv are
those without a cell immediately to the right (above the path) with many cells below or those with a cell
immediately to the right (above the path) with few cells below. Thus we can have one case or the other,
but not both.

Now consider:

Proposition 2.6 If Π is a (3, n)-Dyck path then

area(Π) + skip(Π) + dinv(Π) = |rk(L3,n)| = n− 1.

Proof: It is sufficient to show that for every cell above the path that does not contribute to the dinv of Π
there is a unique corresponding skip in the rank word of Π. Let x be a such cell that does not satisfy the
inequality (3). Then by Proposition 2.5, x satisfies one of two cases:

Case 1: arm(x) = 1 and leg(x) < n
3 − 1. In this case it is certainly true that leg(x) < bn/3c. Let x be

the cell that is directly bn/3c cells below x. We know that x must lie below the path. We will show that
for each xi that does not contribute to the dinv, the rank of xi will lie in a distinct skip.

Suppose x is a cell with arm(x) = 1 that does not contribute to the dinv. From arm(x) = 1, rk(x) > n.
So rk(x) = rk(x)− 3 · bn/3c > 0. Let x̂ be the cell immediately to the right of x. So rk(x̂) = rk(x)−n.
From n > 3 · bn/3c,

rk(x̂) < rk(x) < rk(x).

Since x and x̂ are both above the path, rk(x) must be in a skip.
Suppose that x and y are two cells with arm(x) = arm(y) = 1 that do not contribute to the dinv.

Assume that rk(x) > rk(y). So rk(x)− 3 ≥ rk(y) and rk(y) > rk(x). From 3 · bn/3c+ 3 > n,

rk(y) = rk(y)− 3 · bn/3c ≤ rk(x)− 3 · bn/3c − 3 < rk(x)− n = rk(x̂).

So
rk(ŷ) < rk(y) < rk(x̂) < rk(x) < rk(x),

i.e., rk(x) and rk(y) must be in distinct skips.
Case 2: arm(x) = 0 and leg(x) > n

3 . From arm(x) = 0, x̂ must lie below the path. We will show
that for each xi that does not contribute to the dinv, the rank of x̂i will lie in a distinct skip.

Let x̄ be the cell dn/3e below cell x. Since leg(x) > n
3 then cell x̄ is above the path. From 3·dn/3e > n,

rk(x̄) = rk(x)− 3 · dn/3e < rk(x)− n = rk(x̂). So we have

rk(x̄) < rk(x̂) < rk(x).

Since x and x̄ are both above the path, rk(x̂) must be in a skip.
Suppose that x and y are two cells with arm(x) = arm(y) = 0 that do not contribute to the dinv.

Assume that rk(x) > rk(y). So rk(x)− 3 ≥ rk(y) and rk(y) > rk(x̄). From 3 · dn/3e > n+ 3,

rk(ŷ) = rk(y)− n ≤ rk(x)− n− 3 < rk(x)− 3 · dn/3e = rk(x̄).

So
rk(ȳ) < rk(ŷ) < rk(x̄) < rk(x̂) < rk(x),

i.e., rk(x̂) and rk(ŷ) must be in distinct skips. 2
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3 Uniqueness of rank words
In this section we will show that every (3, n)-Dyck path is uniquely determined by the dinv, area, and
skip statistics. That is if Π1 and Π2 are Dyck paths such that

area(Π1) = area(Π2),

skip(Π1) = skip(Π2),

dinv(Π1) = dinv(Π2),

then Π1 = Π2. We know that area(Π1) + skip(Π1) + dinv(Π1) = | rk(L3,n)| = n − 1. Therefore it
is immediate that both paths must be inscribed in the same lattice. So let us consider an algorithm that
generates a rank word, given a Dyck path (later we will prove that it is the rank word associated to the
Dyck path):

Path rank word construction algorithm
Data: Three non-negative integers, a, s, and d such that a = area(Π), s = skip(Π), and d = dinv(Π)

for some (3, n)-Dyck path.
Result: The rank word of Π, rk(Π).
Let n = a+ s+ d+ 1 and set r = rk(L3,n), the rank word of the diagram.
Put boxes around the rightmost d entries of r.
For i = 1 to s

Moving left, skip all successive entries of the same color.
Box the rightmost entry that hasn’t been skipped or boxed.

end

Example 3.1 Consider the (3, 8)-Dyck paths:
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We can compute that dinv(Π1) = 2 and skip(Π1) = 2. If we follow the algorithm we have:
Initial: [ 11 , 22 , 41 , 52 , 71 , 101 , 131 ] because d = 2.

i = 1: [ 11 , 22 , 41 , 52 , 71 , 101 , 131 ] because we skipped the 7 which has color 1
and boxed the rightmost entry that hasn’t been
skipped or boxed, the 5.

i = 2: [ 11 , 22 , 41 , 52 , 71 , 101 , 131 ] because we skip the 4, and boxed the rightmost
entry that hasn’t been skipped or boxed, the 2.

Since s = 2 we only perform two iterations of the loop, so we are done.
Similarly for Π2 we have:

Initial: [ 11 , 22 , 41 , 52 , 71 , 101 , 131 ] because d = 1.

i = 1: [ 11 , 22 , 41 , 52 , 71 , 101 , 131 ] we skip the 10 and the 7 because they are ad-
jacent and have the same color. Then we box
the rightmost entry which hasn’t been boxed or
skipped, which is the 5.

We have finished the algorithm at this point because s = 1, so we only performed one iteration of the
loop.

This leads us to the following proposition:

Proposition 3.2 If Π is a (3, n)-Dyck path and we use the path rank word construction algorithm to
generate a word ω(Π), then ω(Π) = rk(Π).

Proof: To construct a (3, n)-Dyck path it is equivalent to choose a number of cells in the first column
as well as a number of cells in the second column (subject to constraints) to be above the path. This is
essentially choosing a number of entries colored 1 as well as a number of entries colored 2 in the rk(L3,n)
to box . Moreover, all of the boxed entries of a specific color must be the rightmost entries. For instance,
in the previous example, when we constructed the rank word of Π1 we boxed the two rightmost entries
colored with 1 and the two rightmost entries colored with 2. Suppose that there are k cells above the path
in the first column and ` cells above the path in the second column.

Case 1: Suppose that k < n/3. We will show that k = dinv(Π) and ` = skip(Π). From Proposition
2.5, each cell in column one that has arm equal to zero will contribute to the dinv of Π because the leg
is certainly less than n/3. Every cell in column one that has arm equal to one does not contribute to the
dinv.

Suppose ` > 0. Consider the upper left cell, call it x. We have arm(x) = 1 and leg(x) = k−1 < n
3−1,

i.e., x does not contribute to dinv. The other cells in column one with arm one have shorter legs. They
will not contribute to dinv either.

In rk(L3,n) the rightmost dinv(Π) = k entries will be boxed, and they are all color 1. Then the
remaining rightmost 1-colored entries will be skipped (due to skipping) and the rightmost skip(Π) = `
2-colored entries will be boxed. This concludes the proof of this case.

Case 2: Suppose that k > n/3 and k − ` > n
3 + 1. From Proposition 2.5, skip(Π) is equal to the

number of cells with arm zero and whose leg is greater than n/3. There are k − `− dn/3e such cells so
skip(Π) = k − `− dn/3e and dinv(Π) = 2`+ dn/3e.

In rk(L3,n) there are dn/3e entries with color 1 on the right and then the entries alternate in color,
beginning with 2. Thus we will box dn/3e color 1 entries, then ` entries with color 2 and ` entries with
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color 1. Since the last entry we boxed was 1, we will begin skipping color 2 entries and box k− `−dn/3e
color 1 entries. Therefore the rightmost ` color 2 entries are boxed and the rightmost dn/3e + ` +
(k − `− dn/3e) = k color 1 entries are boxed. This completes the proof for this case.

Case 3: Suppose that k > n/3 and k − ` < n
3 + 1. From Proposition 2.5, skip(Π) is equal to the

number of cells with arm equal to one and whose leg is less than n
3 −1. There are `−k+ bn/3c of these.

Thus skip(Π) = `− k + bn/3c and dinv(Π) = 2k − bn/3c.
In rk(L3,n) there are dn/3e color 1 entries on the right and then the entries alternate in color, beginning

with 2. Thus we will box dn/3e color 1 entries. Then we will box 2k−bn/3c−dn/3e = 2k−2·bn/3c−1
entries: k−bn/3c color 2 entires and k−bn/3c−1 color 1 ones. Then we will box `−k+bn/3c color 2
entries at the same time skip `−k+ bn/3c color 1 entries. So we have boxed dn/3e+k−bn/3c−1 = k
entries with color 1 and k−bn/3c+ `− k+ bn/3c = ` entries with color 2. This completes the proof. 2

Remark 1 Any rank word with the rightmost k color 1 entries boxed, the rightmost ` color 2 entries
boxed, and k ≥ ` corresponds uniquely to a (3, n)-Dyck path.

In order to satisfy these conditions, the following inequalities must hold for any (3, n)-Dyck path Π:

1. 0 ≤ skip(Π) < n/3,

2. skip(Π) ≤ dinv(Π) ≤ n− 1− 2 · skip(Π),

3. skip(Π) ≤ area(Π) ≤ n− 1− 2 · skip(Π).

The first inequality is clear because either the rank word skips only color 2 entries (of which there are
bn/3c) or skips only color 1 entries. There are b2n/3c color 1 entries, but the first dn/3e entries only
contribute at most one skip. We know b2n/3c − dn/3e ≤ bn/3c. When b2n/3c − dn/3e < bn/3c,
the first entry of the rank work has color 2. So, totally, there are at most bn/3c entries with color 1 that
contribute skips. When b2n/3c − dn/3e = bn/3c, the first entry of the rank work is color 1, which can
not be a skip. Again, totally, there are at most bn/3c entries with color 1 that contribute skips.

For the second inequality, if dinv(Π) ≥ dn/3e, from skip(Π) < n/3 we have skip(Π) ≤ dinv(Π). If
dinv(Π) < dn/3e, then only color 1 entries are skipped. The number of boxed color 1 entries is dinv(Π)
and the number of boxed color 2 entries is skip(Π). Recall that there must be at least as many color 1
ranks boxed as color 2 ranks boxed in the rank word of a path. So skip(Π) ≤ dinv(Π).

The right part of the second inequality equivalent to skip(Π) ≤ area(Π) (recall that area(Π) +
skip(Π) + dinv(Π) = n − 1). It follows from the fact that the area of a path is the number of un-
boxed entries in the rank word and a skip must always skip at least one entry. From this argument one can
also see that the second and third inequalities are actually equivalent.

The definition of ω, above, does not actually require a path. If we have three non-negative integers that
satisfy the above inequalities we can generate a rank word, call it ω(area, skip,dinv).

Corollary 3.3 Given three non-negative integers a, s, d that satisfy

1. s ≤ a,

2. s ≤ d,

3. a+ s+ d+ 1 is not divisible by 3,
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then there is a unique (3, a+ s+ d+ 1)-Dyck path Π with a = area(Π), s = skip(Π), and d = dinv(Π).

Proof: Set n = a+ s+ d+ 1. We only need to check that ω(a, s, d) has enough entries to ensure that s
skips can be performed. If d ≥ dn/3e then each skip corresponds to two entries, one skipped and one not
skipped. So we need 2s+ d ≤ s+ a+ d, which is true. If d < dn/3e then the first skip and the rightmost
d entries together encompass dn/3e + 1 of the total entries. The remaining skips then correspond to two
entries. Again, we need 2(s− 1) + dn/3e+ 1 ≤ s+ a+ d, which is equivalent to

s− 1 + dn/3e ≤ a+ d. (10)

Recall that area is the unboxed entries. Since there were dn/3e − d skipped entries at the first skip and
s− 1 skipped entries in the middle, a ≥ dn/3e − d+ s− 1, which is exactly inequality (10). 2

Remark 2 Note that if s ≤ a, d and n = a+ s+ d+ 1 then immediately s < n/3.

This leads us to the following theorem:

Theorem 3.4

C3,n(q, t) =

bn/3c∑
s=0

∑
a,d≥s

a+s+d+1=n

qdta (11)

=

bn/3c∑
s=0

n−2s−1∑
a=s

qn−a−s−1ta (12)

Theorem 3.5 There is a unique bijection on the set of (3, n)-Dyck paths that exchanges area and dinv
while fixing skip.

Proof: This follows from the fact that the area, skip, and dinv statistics uniquely define a path and for
every (a, s, d) triple corresponding to a path, (d, s, a) also corresponds to a path. 2

Corollary 3.6 The (3, n)-rational q, t-Catalan polynomials are symmetric in q and t, i.e.,

C3,n(q, t) = C3,n(t, q). (13)

This theorem leads us in two natural directions for further research. First, generalize the skip statistic
to arbitrary (m,n)-Dyck paths, which would give insight into finding an involution that exchanges area
and dinv. Second, completely describe Hikita’s polynomial H3,n (4) since we know the coefficient of
F(1n).
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