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Statistics on Lattice Walks and q-Lassalle
Numbers

Lenny Tevlin†

Liberal Studies, New York University, New York, N.Y. 10003, U.S.A.

Abstract. This paper contains two results. First, I propose a q-generalization of a certain sequence of positive in-
tegers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These q-integers are palindromic
polynomials in q with positive integer coefficients. The positivity depends on the positivity of a certain difference of
products of q-binomial coefficients.
To this end, I introduce a new inversion/major statistics on lattice walks. The difference in q-binomial coefficients is
then seen as a generating function of weighted walks that remain in the upper half-plane.

Résumé. Cet document contient deux résultats. Tout d’abord, je vous propose un q -generalization d’une certaine
séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces q

-integers sont des polynômes palindromiques à q à coefficients entiers positifs. La positivité dépend de la positivité
d’une certaine différence de produits de q-coefficients binomial.
Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de q

-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le
demi-plan supérieur.

Keywords: lattice walks, statistics on words, q-integers

1 Introduction to Lassalle’s Sequences and their q-analogs.
Michel Lassalle [Las12] has discussed two related sequences of numbers Ak and αk. {Ak} is generated
by the following recurrence:

An = (−1)n−1Cn +

n−1∑
j=1

(−1)n−j−1
(
2n− 1

2j − 1

)
AjCn−j , A1 = 1

The second sequence is

αn =
2An
Cn
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He proved that both An and αn are positive integers and each sequence is increasing (and more). (It
turns out that the second sequence is simply related to power sums of zeros of Bessel function J0(z)). It
is intriguing to inquire whether there is a natural q-analog of these numbers. It may be generated by a

q-analog of the above recurrence (with Cn(q) = 1[
n+ 1

]
q

[
2n
n

]
q

, a q-Catalan):

A′n(q) = (−1)n−1qn−1Cn(q) +
n−1∑
j=1

(−1)n−j−1qn−j
[
2n− 1
2j − 1

]
q

A′j(q)Cn−j(q), (1)

but a slightly renormalized version looks neater:

An(q) = (−1)n−1q3−2nCn(q) + (−1)nq3−2n
[
2n− 1

]
q
Cn−1(q)

+

n−1∑
j=2

(−1)n−j−1q2j−2n
[
2n− 1
2j − 1

]
q

Aj(q)Cn−j(q) (2)

with A1(q) = 1. It turns out that An(q) are monic unimodal palindromic polynomials in q with positive
integer coefficients. Here are some examples:

Example 1

A2(q) = 1

A3(q) = 1 + q + q2 + q3 + q4

A4(q) = 1 + 2q + 3q2 + 5q3 + 6q4 + 7q5 + 8q6 + 7q7 + 6q8 + 5q9 + 3q10 + 2q11 + q12

A5(q) = 1 + 3q + 6q2 + 12q3 + 19q4 + 29q5 + 41q6 + 54q7 + 67q8 + 80q9 + 89q10 + 96q11 + 98q12

+ 96q13 + 89q14 + 80q15 + 67q16 + 54q17 + 41q18 + 29q19 + 19q20 + 12q21 + 6q22 + 3q23 + q24

The second Lassalle’s sequence αk has the following q-analog:

αn =
(1 + qn)An(q)

Cn(q)
(3)

And each of αn(q) is also a monic unimodal palindromic polynomial in q with positive integer coeffi-
cients. Here are examples of αn(q)

Example 2

α1(q) = 1 + q

α2(q) = 1

α3(q) = 1 + q

α4(q) = 1 + 2q + 2q2 + 2q3 + q4

α5(q) = 1 + 3q + 5q2 + 8q3 + 9q4 + 9q5 + 8q6 + 5q7 + 3q8 + q9
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The proof of positivity of αk relies (in addition to certain divisibility properties) on the positivity of(
n

k − 1

)(
n

k

)
−
(

n

k − 2

)(
n

k + 1

)
and Lassalle used the combinatorial interpretation of this difference of binomial coefficients as a gen-
erating function of the number of NSEW walks on a square lattice that start at the origin and finish at
(2k − n− 1, 1) [GKS92].
Similarly, the positivity of αk(q) requires the positivity of[

n
k − 1

]
q

[
n
k

]
q

− q2
[

n
k − 2

]
q

[
n

k + 1

]
q

(4)

However in this case a combinatorial interpretation has to be developed.

2 Introduction to q-enumeration of Lattice walks
To understand the positivity of (4) combinatorially, i.e. as a generating function of certain weighted lattice
walks, I first interpret the q-version of the generating function of all NSEW walks as a generating function
of a certain (new) inversion statistics on lattice walks.
The total number of lattice walks from (0, 0) to (c, d) of length n is given by [DR84](

n
1
2 (n− c+ d)

)(
n

1
2 (n− c− d)

)
Think of a given walk as a word w composed of letters N,S,E,W . Then, the walk inversion statistics is
defined

Definition 1

winvN(w) =
∑
N∈w

#S to the left of N

winvW (w) =
∑
W∈w

#S +#N +#E to the left of W

winvE(w) =
∑
E∈w

#S +#N + 2#W to the left of E

wpinv(w) = winvN(w) + winvW (w) + winvE(w)

Example 3 Here are the inversions of the walks (from left to right) on Fig. 1:

WNEN = 2 · 1 + 1 = 3

ENWN = 1 + 1 = 2

NWNE = 1 + (2 + 2 · 1) = 5

NENW = 1 + (2 + 1) = 4

WNNE = 2 + 2 · 1 = 4

ENNW = 1 + 2 = 3
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Fig. 1: Some walks from (0, 0) to (0, 2) with n = 4 steps.

Denote the set of all lattice walks from (a, b) to (c, d) in n letters (steps) by Pn((a, b) | (c, d)). The
q-analog of the walk enumeration formula is the following generating function.

Proposition 1 [
n

1
2 (n− c+ d)

]
q

[
n

1
2 (n− c− d)

]
q

=
∑

w∈Pn((0,0)|(c,d))

qwinv(w) (5)

The following is true for the walks restricted to the upper half plane. Denote the set of walks starting at
(0, 0) and ending at (c, d) in n steps and never going below the x-axis by P+

n ((0, 0) | (c, d)), then

Proposition 2[
n

1
2 (n+ c+ d)

]
q

[
n

1
2 (n+ c− d)

]
q

− qd+1

[
n

1
2 (n+ c+ d) + 1

]
q

[
n

1
2 (n+ c− d)− 1

]
q

=
∑

w∈P+
n ((0,0)|(c,d))

qwinv(w) (6)

In Section 6 I will also introduce an analog of a major index, wmaj(w), which is, conjecturally, equally
distributed with winv(w) over lattice walks.

3 q-Lassalle Numbers
The purpose of this section is to derive a bilinear recursion relations for Ak(q) and αk(q), from which the
positivity and integrality follow.
The strategy is to rewrite the recursion relation between A′(q) (as in (1)) as a difference equation. Then,
using the q-difference equation for the generating function of q-Catalan, to obtain the q-difference equa-
tion for the generating function of the q-Lassalle numbers.

A′n(q) = (−1)n−1qn−1Cn(q) +
n−1∑
j=1

(−1)n−j−1qn−j
[
2n− 1
2j − 1

]
q

A′j(q)Cn−j(q)

−
(−1)nqn

[
2n
]
q
Cn(q)[

2n
]
q
!

=
qA′n(q)[
2n− 1

]
q
!
+

n−1∑
j=1

qA′j(q)[
2j − 1

]
q
!

(−1)n−jqn−jCn−j(q)[
2n− 2j

]
q
!

(7)
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Introduce generating functions and the finite q-difference operator:

H(t; q) =
∑
k≥0

(−1)kqkCk(q)t2k[
2k
]
q
!

≡
∑
k≥0

(−1)kqkt2k[
k
]
q
!
[
k + 1

]
q
!

P (t; q) =
∑
k≥1

qA′k(q)t
2k−1[

2k − 1
]
q
!

Dqf(t) =
f(t)− f(qt)
(1− q)t

then (7) is equivalent to
−DqH(t, q) = P (t; q)H(t; q) (8)

Recall Jackson’s basic q-Bessel function ([Ism82]):

J (1)
ν (x; q) =

(qν+1; q)∞
(q; q)∞

∑
n≥0

(−1)n

(q; q)n(qν+1; q)n

(x
2

)2n+ν
, where (a; q)n =

n−1∏
j=0

(1− aqi) (9)

For ν = 1

J
(1)
1 (x; q) =

1

1− q
∑
n≥0

(−1)n

(q; q)n(q2; q)n

(x
2

)2n+1

=
∑
n≥0

(−1)n[
n
]
q
!
[
n+ 1

]
q
!

(
x

2(1− q)

)2n+1

So that
H(t; q) =

1
√
q t
J
(1)
1 (2(1− q)√q t; q), i.e.

q-Bessel function J (1)
1 (x; q) is a generating function for q-Catalan numbers.

J
(1)
1 (x; q) satisfies the following q-Bessel difference equation:

J
(1)
1 (qx; q)−

(
q

1
2 + q−

1
2

)
J
(1)
1 (
√
q x; q) +

(
1 +

x2

4

)
J
(1)
1 (x; q) = 0 (10)

For H(t; q), (10) translates to:

H(qt; q)−
(
1 +

1

q

)
H(
√
qt; q) +

(
1

q
+ (1− q)2t2

)
H(t; q) = 0 (11)

Through the q-difference equation (8) this implies the following ungainly looking q-difference equation
for P (t; q):

(1 + q + q(1− q)2t2)q(1− q)√qtP (√qt; q) + q2(1− q)2tP (t; q)√qtP (√qt; q)+
+ (1 + q + q(1− q)2t2)q2(1− q)2t2 + q2(1− q)2t2q(1− q)tP (t; q)
= (1− q2)tP (t; q)− q(1− q)(1− q2)t2
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But collecting coefficients of t2n on both sides makes things look better:

A′1(q) = 1

A′2(q) = q2

[2]q[s+ 1]q
[2s− 1]q!

A′s(q) =
q3 + qs+1

[2s− 3]q!
A′s−1(q) +

s−2∑
k=2

qk+3A′k(q)A
′
s−k(q)

[2k − 1]q![2s− 2k − 1]q!

It’s time to rescale, so let
A′k(q) = q3k−4Ak(q)

then the recursion relation for Ak(q) is:

As(q) =
[2s− 1]q
[2]q[s+ 1]q

s−1∑
k=1

qk−1
[2s− 2]q!

[2k − 1]q![2s− 2k − 1]q!
Ak(q)As−k(q) (12)

Translating this recursion into that for αn(q) (as in (3)) produces:

αn(q) =
1[

2
]
q

[
n
]
q

n−1∑
k=1

qk−1
[

n
k + 1

]
q

[
n

k − 1

]
q

αk(q)αn−k(q) (13)

The ratio of the q-binomial coefficients can be rewritten as

1[
n
]
q

[
n

k + 1

]
q

[
n

k − 1

]
q

=
1

[2]q

([
n− 1
r − 1

]
q

[
n− 1
r

]
q

− q2
[
n− 1
r − 2

]
q

[
n− 1
r + 1

]
q

)
Therefore, the proof depends on

• positivity and integrality of

cn,k(q) =

[
n− 1
r − 1

]
q

[
n− 1
k

]
q

− q2
[
n− 1
k − 2

]
q

[
n− 1
k + 1

]
q

• divisibility of cn,k(q) and αk(q) by powers of
[
2
]
q
.

As may be seen from (6), the positivity and integrality of cn,k(q) follows from its combinatorial inter-
pretation as the generating function of winv statistics of upper half-plane lattice walks, namely the walks
that start at (0, 0) and end up at (2k − n− 1, 1) in (n− 1) steps.
Therefore I continue with the lattice walk part of the story.

4 Walk Inversion Generating Function
In order to prove the walk inversion generating function formula, as in (5)[

n
1
2 (n− c+ d)

]
q

[
n

1
2 (n− c− d)

]
q

=
∑

w∈Pn((0,0)|(c,d))

qwinv(w)
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I will need the following lemma. Denote the set of all walks of length n from (0, 0) to (c, d) with exactly
k W steps by Pn((c, d); k). Of course this fixes the number of S steps, r as well. The total number of
steps in n, (c+ k) of which are E, k – W, (d+ r) – N, and r – S.

r =
1

2
(n− c− d)− k

As words, these walks are permutations of each other. Their total number is n!
(c+k)!k!(d+r)!r! .

Lemma 1 The generating function of the walk inversion statistics of n-step walks with k W steps is given
by

qk
2+ck [n]q!

[c+ k]q![
1
2 (n− c+ d)− k]q![k]q![ 12 (n− c− d)− k]q!

=
∑

w∈Pn((c,d);k)

qwinv(w) (14)

Now, in general, to get to (c, d) from (0, 0) in n steps one might take just one W step, or two, etc. The
maximal number of W steps (i.e. no S steps) is

1

2
(n− c− d)

So that

Lemma 2 The walk inversion generating function is

∑
w∈Pn((0,0)|(c,d))

qwinv(w) =

1
2 (n−c−d)∑
k=0

qk
2+ck [n]q!

[c+ k]q![
1
2 (n− c+ d)− k]q![k]q![ 12 (n− c− d)− k]q!

(15)

Now, consider how a walk can end up at (c, d) in n steps, i.e. where could it be at the previous step?

• either at (c− 1, d), with the last step E; adding an E step changes winv by #S +#N + 2#W =
r + (d+ r) + 2k = d+ 2r + 2k = n− c
The contribution of walks coming from the West is

qn−c

1
2 (n−c−d)∑
k=0

qk
2+(c−1)k [n− 1]q!

[c− 1 + k]q!
[
1
2 (n− c− d)− k

]
q
![k]q!

[
1
2 (n− c+ d)− k

]
q
!

• or at (c, d+ 1) with the last step S; adding an S step does not change winv.
The contribution of the walks coming from the North:

1
2 (n−c−d)−1∑

k=0

qk
2+ck [n− 1]q!

[c+ k]q!
[
1
2 (n− c+ d)− k − 1

]
q
![k]q!

[
1
2 (n− c− d)− k − 1

]
q
!
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• or at (c + 1, d) with the last step W; adding a W step changes winv by #S + #N + #E =
r + (d+ r) + (k + c+ 1) = d+ 2r + c+ k + 1 = n− 1− k
The contribution of walks coming from the East is

qn−1

1
2 (n−c−d)−1∑

k=0

qk
2+ck [n− 1]q!

[c+ 1 + k]q!
[
1
2 (n− c+ d)− k − 1

]
q
![k]q!

[
1
2 (n− c− d)− k − 1

]
q
!

• or at (c, d− 1) with the last step N; an addition of an N step with r prior S steps changes winv by
1
2 (n− c− d)− k.
The contribution of the walks coming from the South:

q
1
2 (n−c−d)

1
2 (n−c−d)∑
k=0

qk
2+(c−1)k [n− 1]q!

[c+ k]q!
[
1
2 (n− c− d)− k

]
q
![k]q!

[
1
2 (n− c+ d)− k

]
q
!

The sum of these contributions gives a recursion that establishes (5).

5 Upper Half-Plane walks
Following the logic of walks reflection [GKS92], to every negative path from (0, 0) to (c, d) will associate
a walk from (−2, 0) to (c, d) so that the change in winv is the same for every walk.

Here is the algorithm.

1. Separate each negative walk in two segments w = w1 · w2, where · means concatenation of words:

(a) w1: the part of the walk that starts at (0, 0) and ends at (∗, 0) (before it dips below the x-axis
the first time)

(b) w2: the rest of the walk that runs from (∗, 0) to (c, d); Notice that w2 starts with S and
necessarily has at least d + 1 N steps. More precisely, if the walk has k S steps, it has d + k
N steps.

2. w̃1: move w1 down two steps, so that it starts at (0,−2) and ends at (∗,−2);

3. attach w̃2 to the combined walk. The walk modified this way runs from (0,−2) to (c, d)

Consider the simplest (negative) walk w = w1 · w2: after dipping down below the x-axis it goes straight
up to d, i.e. the part after reaching the x-axis (w2) looks like

w2 = S NN . . .NN︸ ︷︷ ︸
d+1 times

Transform this walk into
w̃2 = NN . . .NN︸ ︷︷ ︸

d+1 times

S

Suppose that w1 contained k S steps. Then (w̃ = w̃1 · w̃2)

winv(w)− winv(w̃) = (d+ 1)(k + 1)− (d+ 1)k = d+ 1
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Now consider a generic w with blocks of S and N letters:

w2 = S . . . S︸ ︷︷ ︸
s1 times

N . . .N︸ ︷︷ ︸
n1 times

S . . . S︸ ︷︷ ︸
s2 times

N . . .N︸ ︷︷ ︸
n2 times

. . . S . . . S︸ ︷︷ ︸
sr times

N . . .N︸ ︷︷ ︸
nr times

where
r∑
i

ni − si = d

By swapping the last S in the each string of si with the last N letter in ni until d + 1 letters N have been
moved, transforms w2

w̃2 = S . . . SS︸ ︷︷ ︸
s1−1 times

NN . . .NN︸ ︷︷ ︸
n1 times

S S . . . S︸ ︷︷ ︸
s2−1 times

N . . .N︸ ︷︷ ︸
n2 times

S . . . S . . . S︸ ︷︷ ︸
si−1 times

N . . .N︸ ︷︷ ︸
r times

S N . . .N︸ ︷︷ ︸
ni−r times

. . . S . . . S︸ ︷︷ ︸
sr times

N . . .N︸ ︷︷ ︸
nr times

with n1 + n2 + . . .+ r = d+ 1

winv(w)− winv(w̃) = {n1(s1 + k)− n1(s1 − 1 + k)}+ {n2(s1 + s2 + k)− n2(s1 + s2 − 1 + k)}
+ . . .+ {r(s1 + . . .+ si + k)− r(s1 + . . .+ si − 1 + k)}
+ {(ni − r)(s1 + . . .+ si + k)− (ni − r)(s1 + . . .+ si + k)}+

+ . . .+ {nr(s1 + . . .+ sr)− nr(s1 + . . .+ sr)} =
∑
i

ni + r = d+ 1

winv(w̃) = q−(d+1)winv(w)

So the total contribution of negative walks is

qd+1Pn((0,−2) | (c, d)) = qd+1

[
n

1
2 (n+ 2 + c+ d)

]
q

[
n

1
2 (n− 2 + c− d)

]
q

Hence (6).

6 Major Walk Index
Setting up the following order S > N > E > W , and with the usual definition of a descent set

desN(w) = {i : S occurs as ith letter and N occurs as i+ 1st letter}

majN(w) =
∑

i∈desN(w)

i

desE(w) = {i : S or N occur as ith letter and E occurs as i+ 1st letter}

majE(w) =
∑

i∈desE(w)

i

desW (w) = {i : S, N, or E occur as ith letter and W occurs as i+ 1st letter}

majW (w) =
∑

i∈desW (w)

i

one can give the following
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Definition 2
wmaj(w) = majN(w) +majE(w) +majW (w) + #E ×#W (16)

Notice the unusual last term... Nevertheless, experiments show that winv and wmaj are equally dis-
tributed over all lattice walks as well as over upper half-plane walks.

Conjecture 1 • ∑
w∈Pn((0,0)|(c,d))

qwinv(w) =
∑

w∈Pn((0,0)|(c,d))

qwmaj(w) (17)

• ∑
w∈P+

n ((0,0)|(c,d))

qwinv(w) =
∑

w∈P+
n ((0,0)|(c,d))

qwmaj(w) (18)

7 q-Integers Associated with q-super Ballot Numbers
Computer experiments indicate that there is a family of q-numbers related to several generalizations of
q-Catalan. For instance, following [Ges92] define q-super Ballot numbers

Bn,k,r(q) =
[k + 2r]q![2n+ k − 1]q!

(k − 1)q!rq!nq![n+ k + r]q!

Then, I venture to make the following conjecture

Conjecture 2 Define a new sequence An,k,r(q) with A1,k,r = B0,k,r(q) through the recurrence

(−1)n−1An,k,r(q) = qn−1Bn,k,r(q) +

n−1∑
j=1

(−1)jqn−j−1
[
2n− 1
2j − 1

]
q

Aj,k,r(q)Bn−j,k,r(q) (19)

then the An,k,r(q) are polynomials in q with positive integers coefficients for all values of n, k, r > 0.

Example 4

A2,1,1(q) = 1 + 2q + 4q2 + 4q3 + 3q4 + q5

A2,2,1(q) = 1 + 3q + 7q2 + 11q3 + 13q4 + 12q5 + 8q6 + 4q7 + q8

A2,2,2(q) = 1 + 3q + 9q2 + 18q3 + 33q4 + 51q5 + 72q6 + 89q7 + 100q8 + 101q9 + 93q10 + 77q11

+ 57q12 + 38q13 + 22q14 + 11q15 + 4q16 + q17

A3,1,1(q) = 1 + 3q + 9q2 + 17q3 + 28q4 + 38q5 + 44q6 + 43q7 + 35q8 + 24q9 + 13q10 + 5q11 + q12

A3,2,1(q) = 1 + 5q + 19q2 + 51q3 + 110q4 + 199q5 + 307q6 + 412q7 + 484q8 + 499q9 + 452q10

+ 358q11 + 245q12 + 143q13 + 69q14 + 26q15 + 7q16 + q17

A3,2,2(q) = 1 + 5q + 22q2 + 68q3 + 181q4 + 414q5 + 848q6 + 1567q7 + 2652q8 + 4134q9 + 5980q10

+ 8058q11 + 10155q12 + 11997q13 + 13313q14 + 13892q15 + 13639q16 + 12597q17+

+ 10937q18 + 8913q19 + 6802q20 + 4845q21 + 3206q22 + 1958q23 + 1094q24

++552q25 + 247q26 + 95q27 + 30q28 + 7q29 + q30
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