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A representation-theoretic proof of the
branching rule for Macdonald polynomials

Yi Sun1†

1Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract. We give a new representation-theoretic proof of the branching rule for Macdonald polynomials using the
Etingof-Kirillov Jr. expression for Macdonald polynomials as traces of intertwiners of Uq(gln). In the Gelfand-
Tsetlin basis, we show that diagonal matrix elements of such intertwiners are given by application of Macdonald’s
operators to a simple kernel. An essential ingredient in the proof is a map between spherical parts of double affine
Hecke algebras of different ranks based upon the Dunkl-Kasatani conjecture.

Résumé. Nous donnons une nouvelle preuve représentation-théorique de la règle de branchement pour les polynômes
de Macdonald en utilisant l’expression Etingof-Kirillov Jr. pour les polynômes de Macdonald comme des traces de
intertwiners de Uq(gln). Dans la base de Gelfand-Tsetlin, nous montrons que les éléments de matrice diagonaux de
ces intertwiners sont donnés par action des opérateurs de Macdonald à un noyau simple. Un ingrédient essentiel dans
la preuve est une application entre les parties sphériques des algèbres de Hecke double affines de rangs différents
basés sur la conjecture Dunkl-Kasatani.
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1 Introduction
The Macdonald polynomials Pλ(x; q, t) are a two-parameter family of symmetric polynomials indexed
by partitions λ which form an orthogonal basis for the ring of symmetric functions with respect to a (q, t)-
deformation of the standard inner product. They were originally introduced by Macdonald (see [Mac95])
as a generalization of many known families of special functions, including Schur functions, Jack and Hall-
Littlewood polynomials, and Heckman-Opdam hypergeometric functions. Macdonald proved a branching
rule for the Pλ(x; q, t) and conjectured three additional symmetry, evaluation, and norm identities collec-
tively known as Macdonald’s conjectures. These conjectures were proven by Cherednik using techniques
from double affine Hecke algebras. Etingof and Kirillov Jr. realized the Macdonald polynomials in
[EK94] in terms of traces of intertwiners of the quantum group Uq(gln); using this interpretation, they
gave new proofs of Macdonald’s conjectures in [EK96].

The purpose of this work is to give a representation-theoretic proof and interpretation of Macdonald’s
branching rule from the perspective of quantum groups. We give a new expression for diagonal matrix
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elements of Uq(gln)-intertwiners in the Gelfand-Tsetlin basis as the application of Macdonald’s differ-
ence operators to a simple kernel. We then show that the resulting summation expression for Pλ(x; q, t)
becomes Macdonald’s branching rule after a summation by parts procedure. A key ingredient is the con-
struction of a map Resl(q2) between spherical parts of double affine Hecke algebras of different ranks. Our
construction makes use of the Dunkl-Kasatani conjecture and is compatible with Cherednik’s SL2(Z)-
action on spherical DAHA.

In the remainder of this extended abstract, we state our results on matrix elements of quantum group
intertwiners and maps between spherical double affine Hecke algebras and then explain in more detail
how they may be used to give a new proof of Macdonald’s branching rule. Full details, background, and
a complete list of references can be found in [Sun14b].

1.1 Macdonald polynomials
Let ρ =

(
n−1

2 , . . . , 1−n
2

)
and let er denote the elementary symmetric polynomial. For a partition λ,

the Macdonald polynomial Pλ(x; q2, t2) is the joint polynomial eigenfunction with leading term xλ and
eigenvalue er(q2λt2ρ) of the operators

Dr
n,x(q2, t2) = tr(r−n)

∑
|I|=r

∏
i∈I,j /∈I

t2xi − xj
xi − xj

Tq2,I ,

where Tq2,I =
∏
i∈I Tq2,i and Tq2,if(x1, . . . , xn) = f(x1, . . . , q

2xi, . . . , xn). An integral signature λ is
a sequence λ = (λ1 ≥ · · · ≥ λn) with λi − λj ∈ Z. We extend the definition of Macdonald polynomials
to arbitrary signatures by setting P(λ1+c,...,λn+c)(x; q2, t2) = (x1 · · ·xn)cPλ(x; q2, t2).

Say that integral signatures µ = (µ1 ≥ · · · ≥ µn−1) and λ = (λ1 ≥ · · · ≥ λn) interlace if λ1 ≥ µ1 ≥
λ2 ≥ · · · ≥ µn−1 ≥ λn. Denote interlacing by µ ≺ λ and write |λ| =

∑
i λi. A Gelfand-Tsetlin pattern

subordinate to λ is an interlacing sequence µ = {µl}1≤l≤n = {µ1 ≺ µ2 ≺ · · · ≺ µn−1 ≺ µn = λ}
ending in λ. Define the q-Pochhammer symbol by (u; q) =

∏
n≥0(1 − uqn). In [Mac95], Macdonald

showed that Pλ(x) satisfies the following branching rule, which yields an explicit summation expression
for Pλ(x) over Gelfand-Tsetlin patterns subordinate to λ.

Theorem 1.1 ([Mac95, VI.7.13’]). The Macdonald polynomials satisfy the branching rule

Pλ(x1, . . . , xn) =
∑
µ≺λ

ψλ/µ(q, t)Pµ(x1, . . . , xn−1)x|λ|−|µ|n ,

where the branching coefficient is

ψλ/µ(q, t) =
∏

1≤i≤j≤`(µ)

(qµi−µj tj−i+1; q)(qλi−λj+1tj−i+1; q)(qλi−µj+1tj−i; q)(qµi−λj+1+1tj−i; q)

(qµi−µj+1tj−i; q)(qλi−λj+1+1tj−i; q)(qλi−µj tj−i+1; q)(qµi−λj+1tj−i+1; q)
.

Corollary 1.2. The Macdonald polynomials admit the summation formula

Pλ(x, q, t) =
∑

µ1≺···≺µn−1≺µn=λ

n∏
i=1

ψµi/µi−1(q, t)

n∏
i=1

x
|µi|−|µi−1|
i .
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1.2 The quantum group Uq(gln)

Let Uq(gln) be the finite type quantum group with generators ei, fi for i = 1, . . . , n − 1 and q
hi
2 for

i = 1, . . . , n and relations

[hi, hj ] = 0, [hi, ei] = ei, [hi, fi] = −fi, [hi, ei+1] = −ei+1, [hi, fi+1] = fi+1,

[hi, ej ] = [hi, fj ] = 0 for j 6= i, i+ 1, [ei, fj ] = δij
qhi−hi+1 − qhi+1−hi

q − q−1
, [ei, ej ] = [fi, fj ] = 0 for |i− j| > 1

e2
i ej − (q + q−1)eiejei + eje

2
i = 0, f2

i fj − (q + q−1)fifjfi + fjf
2
i = 0 for |i− j| = 1.

We take the coproduct on Uq(gln) defined by ∆(ei) = ei ⊗ q
hi+1−hi

2 + q
hi−hi+1

2 ⊗ ei, ∆(fi) = fi ⊗
q
hi+1−hi

2 + q
hi−hi+1

2 ⊗ fi, and ∆(hi) = hi ⊗ 1 + 1 ⊗ hi. Denote the subalgebra generated by fi
and qhi/2 by Uq(b−). For each r < n, embed Uq(glr) inside Uq(gln) as the subalgebra generated
by e1, . . . , er−1, f1, . . . , fr−1, and qh1/2, . . . , qhr/2. Finally, denote the finite dimensional irreducible
Uq(gln)-representation corresponding to an integral signature λ by Lλ.

1.3 Etingof-Kirillov Jr. approach to Macdonald polynomials
In [EK94], Etingof and Kirillov Jr. realized Macdonald polynomials via traces of Uq(gln)-intertwiners.
Let Wk−1 denote the representation L((k−1)(n−1),−(k−1),...,−(k−1)) = Sym(k−1)n(Cn) ⊗ (det)−(k−1),
and choose an isomorphism Wk−1[0] ' C · wk−1 for some wk−1 ∈ Wk−1[0] which spans the 1-
dimensional zero weight space Wk−1[0]. Define the weight ρn =

(
n−1

2 , . . . , 1−n
2

)
. Writing ρ for ρn,

for a signature λ there exists a unique intertwiner Φnλ : Lλ+(k−1)ρ → Lλ+(k−1)ρ ⊗Wk−1 normalized to
send the highest weight vector vλ+(k−1)ρ in Lλ+(k−1)ρ to

vλ+(k−1)ρ ⊗ wk−1 + (lower order terms),

where (lower order terms) denotes terms of weight lower than λ+ (k− 1)ρ in the first tensor coordinate.
Traces of these intertwiners lie inWk−1[0] = C·wk−1 and yield Macdonald polynomials when interpreted
as scalar functions via the identification wk−1 7→ 1.

Theorem 1.3 ([EK94, Theorem 1]). The Macdonald polynomial is given by Pλ(x; q2, q2k) =
Tr(Φnλx

h)
Tr(Φn0 xh)

.

Proposition 1.4 ([EK94, Main Lemma]). On L(k−1)ρ, the trace may be expressed explicitly as

Tr(Φn0x
h) = (x1 · · ·xn)−

(k−1)(n−1)
2

k−1∏
s=1

∏
i<j

(xi − q2sxj).

Remark. Our notation is related to that of [EK94] via PEKλ (x; q, t) = Pλ(x; q2, t2).

1.4 Gelfand-Tsetlin basis
The representation Lλ of Uq(gln) admits a basis {vµ} indexed by Gelfand-Tsetlin patterns µ subordinate

to λ. The weight of a basis vector vµ is wt(vµ) =
(
|µn| − |µn−1|, . . . , |µ2| − |µ1|, |µ1|

)
. It was shown

in [UTS90] that these basis vectors may be expressed in terms of lowering operators dr,i in Uq(glr) ∩
Uq(b−) ⊂ Uq(gln) applied to the highest weight vector vλ.
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Proposition 1.5 ([UTS90, Theorem 2.9]). The Gelfand-Tsetlin basis vectors may be realized as vµ =

dµ
1

1 dµ
2−µ1

2 · · · dµn−µn−1

n vλ for dr,i ∈ Uq(glr) ∩ Uq(b−) and dτr = dτ1r,1 · · · dτrr,r for a partition τ .

1.5 Statement of the main results
Our main result shows that diagonal matrix elements of the Uq(gln)-intertwiners of Theorem 1.3 are given
by application of Macdonald’s operators to a simple kernel.

Theorem 1.6. In the Gelfand-Tsetlin basis, the diagonal matrix element of Φnλ on the basis vector corre-
sponding to the Gelfand-Tsetlin pattern

{σ1 ≺ · · · ≺ σn−1 ≺ λ+ (k − 1)ρ}

with σli = µi + (k − 1)n−i2 is given by

c(µ, λ) =

∏k−1
a=1 Dn−1,q2µ̄(q2a; q−2, q2(k−1))

∏
i≤j [λi − µj + k(j − i)]k−1

∏
i<j [µi − λj + k(j − i) + k − 2]k−1∏

i≤j [µi − µj + k(j − i) + k − 1]k−1

∏
i<j [λi − λj + k(j − i)− 1]k−1

,

where µ̄i = µi − k(i− 1), [m] = qm−q−m
q−q−1 , [m]k = [m] · · · [m− k + 1], and

Dn−1,q2µ̄(u; q2, t2) =

n−1∑
r=0

(−1)n−1−run−1−rDr
n−1,q2µ̄(q2, t2).

Using Theorem 4.4, we give a new representation-theoretic proof of Macdonald’s branching rule.

Theorem 1.7. At t = qk for positive integer k, we have

Pλ(x1, . . . , xn; q2, q2k) =
∑
µ≺λ

x|λ|−|µ|n Pµ(x1, . . . , xn−1; q2, q2k)ψλ/µ(q2, q2k)

with

ψλ/µ(q2, q2k) =

∏
i≤j [λi − µj + k(j − i) + k − 1]k−1

∏
i<j [µi − λj + k(j − i)− 1]k−1∏

i≤j [µi − µj + k(j − i) + k − 1]k−1

∏
i<j [λi − λj + k(j − i)− 1]k−1

.

Remark. This formulation is equivalent to that of Theorem 1.1. To see this, note that for each λ and µ the
branching coefficients ψλ/µ(q, t) are rational functions in q and t and are therefore uniquely determined
by their values at (q2, q2k) for all positive integers k.

Remark. Theorem 1.3 gives Pλ(x; q2, q2k) as a summation over Gelfand-Tsetlin patterns subordinate
to λ + (k − 1)ρ and Macdonald’s branching rule gives it as a summation over Gelfand-Tsetlin patterns
subordinate to λ. Our result explains how these summations over different index sets are related.

1.6 Degenerations of our results and connections to recent work
We discuss now the Heckman-Opdam, Hall-Littlewood, and Jack limits of our results.
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• In the quasi-classical limit q = eε, t = qk, λ = bε−1Λc, x = eεX , and ε → 0, the Macdonald
polynomials become the Heckman-Opdam hypergeometric functions introduced in [HO87, Opd88].
These functions were realized as integrals over Gelfand-Tsetlin polytopes in [BG13] by a scaling
limit of Corollary 1.2. In [Sun14a], the expression of [BG13] was lifted to an integral over dress-
ing orbits of a Poisson-Lie group by integration over Liouville tori and adjunction for Calogero-
Sutherland Hamiltonians. The techniques of this paper degenerate to the techniques of [Sun14a].

• In the specialization q = 0, the Macdonald polynomials become the Hall-Littlewood polynomials.
In [Ven14], a summation expression was given for matrix elements of the Uq(gln)-intertwiners
Φnλ in the Gelfand-Tsetlin basis; this expression factors in the Hall-Littlewood limit. It would be
interesting to understand if it may be realized as a degeneration of Proposition 4.3 or Theorem 4.4.

• The Jack polynomials are a scaling limit of Macdonald polynomials under the specialization t = qk

and the limit q → 1 and have a similar branching rule. They were given in [Eti95] as traces of
intertwiners of U(gln)-modules using a degeneration of the Etingof-Kirillov Jr. construction, and
we expect our methods to degenerate to a representation-theoretic proof of the Jack branching rule.

2 Quantum groups and Macdonald polynomials
2.1 Notations
Set ρn,i = n+1

2 − i and 1 = (1, . . . , 1). For any set of indices I , let 1I denote the vector with 1’s in those
indices and 0’s elsewhere. Define ρ̃n = ρn − n−1

2 1 so that ρ̃n,i = −(i − 1) and ρ̃n−1,i = ρ̃n,i. For any

signature λ, define the shifts λ̃ = λ+ (k − 1)ρ̃ and λ̄ = λ+ kρ̃. Denote by [a] = qa−q−a
q−q−1 the q-number,

[a]! = [a] · [a− 1] · · · [1] the q-factorial, and [a]m = [a] · [a− 1] · · · [a−m+ 1] the falling q-factorial.

2.2 Macdonald symmetry identity
We now produce Macdonald operators acting on indices. We abuse notation to write Dr

n−1,q2µ̄ for differ-
ence operators acting on additive indices µ̄ as well as multiplicative variables q2µ̄.

Proposition 2.1 (Macdonald symmetry identity). We have

Pλ(q2µ+2kρ; q2, q2k) =
∏
i<j

[λi − λj + k(j − i) + k − 1]k
[µi − µj + k(j − i) + k − 1]k

Pµ(q2λ+2kρ; q2, q2k).

Proposition 2.2. The operator

D̃r
n−1,q2µ̄(q2, q2k) =

∏
i<j

[µ̄i − µ̄j + k − 1]k ◦Dr
n−1,q2µ̄(q2, q2k) ◦

∏
i<j

[µ̄i − µ̄j + k − 1]−1
k

satisfies

D̃r
n−1,q2µ̄(q2, q2k) =

∑
|I|=r

∏
i∈I,j /∈I,i>j

[µ̄i − µ̄j + k][µ̄i − µ̄j − k + 1]

[µ̄i − µ̄j ][µ̄i − µ̄j + 1]
Tq2,I

and D̃r
n−1,q2µ̄(q2, q2k)Pµ(x; q2, q2k) = er(x)Pµ(x; q2, q2k).

Proof. The expression for D̃r
n−1,q2µ̄(q2, q2k) follows by direct computation, and the eigenvalue identity

from the Macdonald symmetry identity.
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2.3 Adjoints of Macdonald difference operators
We now consider adjoints of Macdonald operators with respect to a Jackson-type inner product. Fix lower
and upper limits ζ = (ζ−, ζ+) with ζ− = (ζ−1 , . . . , ζ

−
n−1), ζ+ = (ζ+

1 , . . . , ζ
+
n−1), and ζ+

i − ζ
−
i ∈ Z≥0.

Define the inner product 〈f, g〉ζ :=
∑ζ+

µ=ζ− f(q2µ)g(q2µ), with iterated summation defined by

ζ+∑
µ=ζ−

:=

ζ+
1∑

µ1=ζ−1

· · ·
ζ+
n−1∑

µn−1=ζ−n−1

. (1)

We consider situations where g vanishes along a border of the region of summation. Say that the function
g(q2µ) is (ζ, l)-adapted if g(q2µ) = 0 on the set {µ | ζ+

i < µi ≤ ζ+
i + l or ζ−i − l ≤ µi < ζ−i for any i}.

Proposition 2.3. If f(q2µ) is (ζ, l)-adapted, we have for any g that〈
l∏
i=1

D̃
rl+1−i
n−1,q2µ̄(q2, q2k)†f, g

〉
ζ−,ζ++l1

=

〈
f,

l∏
i=1

D̃ri
n−1,q2µ̄(q2, q2k)g

〉
ζ

,

where

D̃r
n−1,q2µ̄(q2, q2k)† =

∏
i<j

[µ̄i − µ̄j + k − 1]−1
k−1 ◦D

r
n−1,q2µ̄(q−2, q2(k−1)) ◦

∏
i<j

[µ̄i − µ̄j + k − 1]k−1.

Proof. By a direct computation for l = 1 and induction on l.

2.4 Reformulating the Etingof-Kirillov Jr. construction
We shift the weights used in the Etingof-Kirillov Jr. construction to make restriction from Uq(gln) to
Uq(gln−1) more notationally convenient. For a partition λ, define the intertwiner Φ̃nλ : Lλ+(k−1)ρ̃ →
Lλ+(k−1)ρ̃ ⊗Wk−1 to be Φ̃nλ = Φnλ ⊗ id

(det)−
(k−1)(n−1)

2
. We rephrase Theorem 1.3 in terms of Φ̃nλ.

Corollary 2.4. The Macdonald polynomial Pλ(x; q2, q2k) is given by Pλ(x; q2, q2k) =
Tr(Φ̃nλx

h)

Tr(Φ̃n0 xh)
.

Corollary 2.5. The denominator in Corollary 2.4 is given by

Tr(Φ̃n0x
h) = (x1 · · ·xn)−(k−1)(n−1)

k−1∏
s=1

∏
i<j

(xi − q2sxj).

3 Spherical subalgebras of DAHAs of different ranks
3.1 Double affine Hecke algebras
Let Hn(q, t) denote the double affine Hecke algebra (DAHA) of GLn defined by [Che05]. It is defined
as the algebra generated by X±1 , . . . , X

±
n , Y

±
1 , . . . , Y ±n , and T±1 , . . . , T

±
n−1 subject to the relations

• (Ti − t)(Ti + t−1) = 0, TiTi+1Ti = Ti+1TiTi+1, [Ti, Tj ] = 0 for |i− j| 6= 1;
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• TiXiTi = Xi+1, T−1
i YiT

−1
i = Yi+1, and [Ti, Xj ] = [Ti, Yj ] = 0 for |i− j| > 1;

• [Xi, Xj ] = 0, [Yi, Yj ] = 0, Y1X1 · · ·Xn = qX1 · · ·XnY1, and X−1
1 Y2 = Y2X

−1
1 T−2

1 .

For a reduced decomposition σ = si1 · · · sil , let Tσ = Ti1 · · ·Til . For e = (1−t2)n

(t2;t2)n

∑
σ∈Sn t

`(σ)Tσ , the
spherical DAHA is the subalgebra eHn(q, t)e.

3.2 Polynomial representation of DAHA and Macdonald operators
The DAHAHn(q, t) admits a faithful polynomial representation ρ on C[X±1 , . . . , X

±
n ] given by

ρ(Xi) = Xi

ρ(Ti) = tsi +
t− t−1

Xi/Xi+1 − 1
(si − 1)

ρ(Yi) = ρ(Ti) · · · ρ(Tn−1)sn−1 · · · s1Tq,X1
ρ(T−1

1 ) · · · ρ(T−1
i−1),

where si exchanges Xi and Xi+1 and Tq,X1 is the q-shift operator in X1. The action of elements of
eHn(q, t)e on the symmetric part of the polynomial representation yields the Macdonald operators.

Proposition 3.1. When restricted to C[X±1 , . . . , X
±
n ]Sn , the action of e · er(Y1, . . . , Yn) · e is via

ρ(e · er(Y1, . . . , Yn) · e) = Dr
n,X(q2, t2).

Remark. By faithfulness, we will refer interchangeably to elements of the DAHA and spherical DAHA
and their images under the polynomial representation in what follows.

3.3 SL2(Z)-action on DAHA
Define the isomorphisms ε(q, t) : Hn(q, t)→ Hn(q−1, t−1) given by

ε(q, t) : Xi 7→ Yi, Yi 7→ Xi, Ti 7→ T−1
i , q 7→ q−1, t 7→ t−1

and τ+(q, t) : Hn(q, t)→ Hn(q, t) given by

τ+ : Xi 7→ Xi, Ti 7→ Ti, Y1 · · ·Yr 7→ q−r/2X1 · · ·XrY1 · · ·Yr.

Define also the composition τ− = ετ+ε.

Proposition 3.2 ([Che05]). The map
(

1 1
0 1

)
7→ τ− and

(
1 0
1 1

)
7→ τ+ defines an action of SL2(Z) on

Hn(q, t) which preserves eHn(q, t)e.

3.4 Multiwheel condition and the restriction map
Following [Kas05], we say that (X0

1 , . . . , X
l−1
n ) ∈ Cnl satisfies the multiwheel condition if the indices

may be permuted so that

Xa
i = X0

i t
a−1 for 1 ≤ i ≤ n and 0 ≤ a ≤ l − 1.

Define the ideal Inl(t) ⊂ C[(Xa
i )±] by Inl(t) = {f | f(X) = 0 if X satisfy the multiwheel condition}.
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Proposition 3.3 ([Kas05, Theorem 6.3] and [ES09, Theorem 5.10]). The subspace Inl(t) ⊂ C[(Xa
i )±] is

aHnl(q, t)-submodule and C[(Xa
i )±]/Inl(t) is irreducible.

Define the map Resl(t2) : C[(Xa
i )±]Snl → C[X±i ]Sn by Resl(t2)(Xa

i ) = t1−l+2aXi. The kernel of
Resl(t2) is ISnlnl (t2), so Resl(q2) induces by Proposition 3.3 an action of eHnl(q−2l, q2)e on C[X±i ]Sn ,
giving a map R̃esl(q2) : eHnl(q−2l, q2)e → End(C[X±i ]Sn). We claim that this map factors through the
polynomial representation via a map of algebras Resl(q2) : eHnl(q−2l, q2)e→ eHn(q−2, q2l)e.

Theorem 3.4. The map Resl(q
2) : eHnl(q−2l, q2)e→ eHn(q−2, q2l)e defined by

Resl(q
2)(ep(Xa

i )e) = ep(q1−lX1, . . . , q
l−1X1, . . . , q

1−lXn, . . . , q
l−1Xn)e for p ∈ C[(Xa

i )±]Snl , and

Resl(q
2)(ep(Y ai )e) = ep(q1−lY1, . . . , q

l−1Y1, . . . , q
1−lYn, . . . , q

l−1Yn)e

is well defined and satisfies

(a) for any h ∈ eHnl(q−2l, q2)e, as operators on C[(Xa
i )±]Snl we have

Resl(q2) ◦ h = Resl(h) ◦ Resl(q2);

(b) as operators on eHnl(q−2l, q2)e, we have

Resl(q
−2) ◦ εnl(q−2l, q2) = εn(q−2, q2l) ◦ Resl(q2);

(c) as operators on eHnl(q−2l, q2)e, we have

Resl(q
2) ◦ τ+ = τ+ ◦ Resl(q2).

Corollary 3.5. The map Resl(q
2) commutes with the action of SL2(Z) on the spherical DAHA.

The assignment Resl(q2)((Xa
i )1/2) = qa−(l−1)/2X

1/2
i extends Resl(q2) to an operator C[(Xa

i )±1/2]Snl →
C[X

1/2
i ]Sn . Identify elements of the spherical DAHA with difference operators on

∏
i,a(Xa

i )1/2·C[(Xa
i )±]Snl ⊂

C[(Xa
i )±1/2]Snl . They may not satisfy the spherical DAHA relations, but we still have the following.

Corollary 3.6. For any h ∈ eHnl(q−2l, q2)e, we have Resl(q2) ◦ h = Resl(h) ◦Resl(q2) as operators on∏
i,a(Xa

i )1/2 · C[(Xa
i )±]Snl .

3.5 Computing Resl(q
2) on a specific operator

Define the operator
Dn,X(u; q, t) =

∑
r

(−1)n−run−rDr
n,X(q, t). (2)

Identify eHnl(q−2l, q2)e with its image under the polynomial representation; in this identification, we
now compute the image of a specific operator under Resl.

Lemma 3.7. We have the relation Resl(q
2)(Dnl,X(ql+1; q−2l, q2)) =

∏l
a=1Dn,X(q2a; q−2, q2l).

Proof. Compute using the definition of Resl(q2) and the fact that Dnl,X(ql+1; q−2l, q2) is the image of∏n
i=1

∏l−1
a=0(Y ai − ql+1) in the polynomial representation.
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4 Diagonal matrix elements in the Gelfand-Tsetlin basis
4.1 Factorization of matrix elements
For µ1, . . . , µn = λ so that µ̃i ≺ · · · ≺ µ̃n = λ̃ forms a Gelfand-Tsetlin pattern subordinate to λ̃, denote
the pattern by µ̃. Let c(µ̃, λ) be the diagonal matrix coefficient of vµ̃ in Φ̃λ. For µ ≺ λ, define gt(µ) by
gt(µ)li = µi for l < n. Define c(µ, λ) to be the diagonal matrix coefficient c(gt(µ̃), λ) of vgt(µ̃) in Φ̃λ.

We show that Φ̃λ has non-zero diagonal matrix elements only on basis vectors indexed by patterns of
the form µ̃ and that these elements admit a level-by-level factorization.

Lemma 4.1. If vµ is not of the form vµ̃, vµ has zero diagonal matrix element in Φ̃λ.

Proof. For some r < n, we cannot write µr = τ̃ for any τ . Let U ⊂ Wk−1 be the Uq(glr)-submodule
of vectors of weight 0 for qhr+1 , . . . , qhn so that U ' L(k−1)(r−1,−1,...−1) as a Uq(glr)-module. Let µr

denote the truncation of µr so that µr
i

= µri . Consider the pattern ξ given by ξ = {gt(µr) ≺ µr+1 ≺
· · · ≺ µn−1 ≺ λ}. Let Lµr ⊂ Lλ̃ be the Uq(glr)-submodule with highest weight µr generated by vξ.
By Proposition 1.5, the diagonal matrix element of vµ lies in Lµr ⊗ U , hence is a multiple of the matrix
element of vµ in the induced Uq(glr)-intertwiner Lµr → Lλ̃ → Lλ̃ ⊗ Wk−1 → Lµr ⊗ U given by
projection onto Lµr ⊗ U . This intertwiner is zero because µr is not of the form µr = τ̃ for some τ .

Proposition 4.2. If µ̃ = {µ̃1 ≺ · · · ≺ µ̃n = λ̃} is subordinate to λ̃, then c(µ̃, λ) =
∏n−1
i=1 c(µ

i, µi+1).

Proof. By induction on n, it suffices to check that c(µ̃, λ) = c(µ, λ)c
(
{µ̃1 ≺ · · · ≺ µ̃n−1}, µn−1

)
. Let

µ = µn−1. By Proposition 1.5, the basis vector vµ̃ lies in the Uq(gln−1) submodule Lµ̃ ⊂ Lλ̃ with
highest weight vector vgt(µ̃). Let U ⊂ Wk−1 be the Uq(gln−1)-submodule consisting of elements of
weight 0 under qhn . Consider the Uq(gln−1)-intertwiner φ : Lµ̃ → Lµ̃ ⊗U given by composing Φ̃λ with
the projection onto Lµ̃⊗U . The matrix element c(µ̃, λ) lies in U , hence is the matrix element of vµ̃ in φ.
Notice that φ maps the Uq(gln−1)-highest weight vector vgt(µ̃) to c(µ, λ)vgt(µ̃) ⊗ wk−1 + (l.o.t.) so that

φ = c(µ, λ)Φ̃µ and the matrix element of vµ̃ is the desired c(µ, λ)c
(
{µ̃1 ≺ · · · ≺ µ̃n−1}, µn−1

)
.

4.2 Matrix elements as applications of Macdonald difference operators
Our main technical result expresses matrix elements of Uq(gln)-intertwiners as the application of Mac-
donald difference operators on an explicit kernel. Define the elements ∆k−1

1 (µ) and ∆k−1
2 (µ) by

∆k−1
1 (µ) =

∏
i<j

[µ̄i − µ̄j + (k − 1)]k−1 ∆k−1
2 (µ) =

∏
i<j

[µ̄i − µ̄j − 1]k−1 (3)

and the element ∆k−1(µ, λ) by

∆k−1(µ, λ) =
∏
i≤j

[λi − µj + k(j − i) + k − 1]k−1

∏
i<j

[µi − λj + k(j − i)− 1]k−1. (4)

We compute the diagonal matrix elements of Φ̃λ, resulting in the following expression after manipulation.
We omit the proof, which relies on the summation expression of [AS94] for matrix elements.
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Proposition 4.3. Let µ′ = µ+ (k − 1)1, and ν′ = ν + (k − 1)1. Then c(µ, λ) is given by

c(µ, λ) =
(−1)(n−1)(k−1)q(n−1)k(k−1)

∆k−1
2 (λ)∆k−1

1 (µ)

µ̄′∑
ν̄′=µ̄′−(k−1)1

(−1)|ν̄
′|−|µ̄′|qk(|ν̄′|−|µ̄′|)

∏
i

1

[ν̄′i − µ̄′i + (k − 1)]![µ̄′i − ν̄′i]!∏
i<j [µ̄

′
i − µ̄′j + k − 1]2k−1

∏
i<j [ν̄

′
i − ν̄′j ]∏

i<j [ν̄
′
i − µ̄′j + (k − 1)]k[µ̄′i − ν̄′j ]k

∏
i≤j

[λ̄i − ν̄′j + (k − 1)]k−1

∏
i<j

[ν̄′i − λ̄j − 1]k−1.

Theorem 4.4. Let µ′ = µ+ (k − 1)1. The matrix element c(µ, λ) is given by

c(µ, λ) =

∏k−1
a=1 Dn−1,q2µ̄(q2a; q−2, q2(k−1))∆k−1(µ′, λ)

∆k−1
1 (µ)∆k−1

2 (λ)
,

where Dn−1,q2µ̄(q2a; q−2, q2(k−1)) was defined in (2).

Proof. By Lemma 3.7, we have Resl(q
2)D(n−1)l,q2µ̄(ql+1; q−2l, q2) =

∏l
a=1Dn−1,q2µ̄(q2a; q−2, q2l).

Compute its action on

Resl(q2)

l−1∏
a=0

∏
i≤j

[λ̄i − µ̄aj + k/2]
∏
i<j

[µ̄ai − λ̄j − k/2] =
∏
i≤j

[λ̄i − µ̄j + k − 1]k−1

∏
i<j

[µ̄i − λ̄j − 1]k−1

in two ways and compare with Proposition 4.3.

5 Proving Macdonald’s branching rule
In this section, we prove the branching rule. We use Proposition 4.2 to express the trace in the Gelfand-
Tsetlin basis as a sum of products. Inducting on n and using the expression of Theorem 4.4 for c(µ, λ),
we obtain an expression related to the desired by the summation by parts procedure of Proposition 2.3.

of Theorem 1.7. We induct on n. The base case is trivial because Pλ(x1; q2, q2k) = x
|λ|
1 . For the inductive

step, by Lemma 4.1, it is enough to consider matrix elements for basis vectors vµ̃. By Proposition 4.2 and
the inductive hypothesis, we thus have

Tr(Φ̃nλx
h) =

∑
µ̃1<···<µ̃n−1<λ̃

c(µ0, µ1) · · · c(µn−1, λ)
∏
i

x
(|µ̃i|−|µ̃i−1|)
i

=
∑
µ̃<λ̃

c(µ, λ)x|λ|−|µ|−(k−1)(n−1)
n

∑
µ̃1<···<µ̃n−2<µ̃

c(µ0, µ1) · · · c(µn−2, µn−1)

n−1∏
i=1

x
|µ̃i|−|µ̃i−1|
i

=
∑
µ̃<λ̃

c(µ, λ)x|λ|−|µ|−(k−1)(n−1)
n Pµ(x; q2, q2k)Tr(Φ̃n−1

0 xh),

where x = (x1, . . . , xn−1). By Corollary 2.5, we have that

Tr(Φ̃n−1
0 xh)

Tr(Φ̃n0xh)
= (x1 · · ·xn−1)k−1x(k−1)(n−1)

n

k−1∏
s=1

n−1∏
i=1

(xi − q2sxn)−1.
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We conclude that

Tr(Φ̃nλx
h)

Tr(Φ̃n0xh)
= (x1 · · ·xn−1)k−1

k−1∏
s=1

n−1∏
i=1

(xi − q2sxn)−1
∑
µ̃<λ̃

c(µ, λ)x|λ|n Pµ(x/xn; q2, q2k)

= (x1 · · ·xn−1)k−1
k−1∏
s=1

n−1∏
i=1

(xi − q2sxn)−1
λ↑∑

µ=λ↓−(k−1)1

c(µ, λ)x|λ|n Pµ(x/xn; q2, q2k)

= x(k−1)(n−1)
n

k−1∏
s=1

n−1∏
i=1

(xi − q2sxn)−1

λ↑+(k−1)1∑
µ′=λ↓

c(µ′ − (k − 1)1, λ)x|λ|n Pµ′(x/xn; q2, q2k),

where λ↓ = (λ2, . . . , λn) and λ↑ = (λ1, . . . , λn−1) are vectors of lower and upper indices for µ so that∑
µ≺λ =

∑λ↑

µ=λ↓
in the notation of (1). Note that µ̃ < λ̃ if and only if λi ≥ µi ≥ λi+1 − (k− 1). By the

expression for c(µ′ − (k − 1)1, λ) given in Theorem 4.4, we obtain

Pλ(x; q2, q2k) =
Tr(Φ̃nλx

h)

Tr(Φ̃n0xh)
= x(k−1)(n−1)

n

k−1∏
s=1

n−1∏
i=1

(xi − q2sxn)−1

λ↑+(k−1)1∑
µ′=λ↓

x|λ|n Pµ′(x/xn; q2, q2k)

∏k−1
a=1 Dn−1,q2µ̄(q2a; q−2, q2(k−1))

∏
i≤j [λ̄i − µ̄′j + k − 1]k−1

∏
i<j [µ̄

′
i − λ̄j − 1]k−1∏

i≤j [µ̄
′
i − µ̄′j + k − 1]k−1

∏
i<j [λ̄i − λ̄j − 1]k−1

.

Define the operator D̃n−1,q2µ̄′ (q2a; q2, q2k) =
∑
r(−1)n−1−rq2a(n−1−r)D̃r

n−1,q2µ̄′ (q
2, q2k), and note

that it is diagonalized on Pµ′(x; q2, q2k) by Proposition 2.2. Notice now that the function∏
i≤j

[λ̄i − µ̄′j + k − 1]k−1

∏
i<j

[µ̄′i − λ̄j − 1]k−1

is 0 for λi+1 − (k − 1) ≤ µ′i < λi+1 and λi < µ′i ≤ λi + (k − 1), so it is (λ↓, λ
↑, k − 1)-adapted.

Applying Proposition 2.3 to this function yields the desired

Pλ(x; q2, q2k) = x(k−1)(n−1)
n

k−1∏
s=1

n−1∏
i=1

(xi − q2sxn)−1
λ↑∑

µ′=λ↓

x|λ|n

k−1∏
a=1

D̃n−1,q2µ̄′ (q2a; q2, q2k)Pµ′(x/xn; q2, q2k)

∏
i≥j [λ̄j − µ̄′i + k − 1]k−1

∏
i<j [µ̄

′
i − λ̄j − 1]k−1∏

i≤j [µ̄
′
i − µ̄′j + k − 1]k−1

∏
i<j [λ̄i − λ̄j − 1]k−1

= x(k−1)(n−1)
n

k−1∏
s=1

n−1∏
i=1

xi/xn − q2s

xi − q2sxn

λ↑∑
µ′=λ↓

x|λ|−|µ
′|

n Pµ′(x; q2, q2k)

∏
i≥j [λ̄j − µ̄′i + k − 1]k−1

∏
i<j [µ̄

′
i − λ̄j − 1]k−1∏

i≤j [µ̄
′
i − µ̄′j + k − 1]k−1

∏
i<j [λ̄i − λ̄j − 1]k−1

=
∑
µ′≺λ

x|λ|−|µ
′|

n Pµ′(x; q2, q2k)

∏
i≥j [λ̄j − µ̄′i + k − 1]k−1

∏
i<j [µ̄

′
i − λ̄j − 1]k−1∏

i≤j [µ̄
′
i − µ̄′j + k − 1]k−1

∏
i<j [λ̄i − λ̄j − 1]k−1

.
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