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Abstract. We develop a diagrammatic categorification of the polynomial ring Z[x], based on a geometrically-defined
graded algebra and show how to lift various operations on polynomials to the categorified setting. Our categorification
satisfies a version of the Bernstein-Gelfand-Gelfand reciprocity property, with indecomposable projective modules
corresponding to xn and standard modules to (x − 1)n in the Grothendieck ring. This construction generalizes to
categorification of various orthogonal polynomials.

Résumé. Catégorification de l’anneau des polynômes Z[x]

Nous développons une catégorification diagrammatique de l’anneau des polynômes Z[x], s’appuyant sur une algèbre
graduée définie de manière géométrique, et nous décrivons comment on peut relever certaines opérations sur les
polynômes dans cette catégorification.

Notre catégorification vérifie une version de la réciprocité de Bernstein-Gelfand-Gelfand, avec les modules projec-
tifs indécomposables correspondants à xn et les modules standards correspondants à (x − 1)n dans l’anneau de
Grothendieck. Cette construction se généralise à certains polynômes orthogonaux.

Keywords: categorification, diagrammatic algebra, Grothendieck ring, Bernstein-Gelfand-Gelfand reciprocity, cross-
ing less matchings,

1 Introduction
Inspired by the general idea of categorification, introduced by L. Crane and I. Frenkel, we construct a
categorification of the polynomial ring Z[x], more precisely of polynomials (x − 1)n that can be gen-
eralized to orthogonal one-variable polynomials, including Chebyshev polynomials of the second kind
and the Hermite polynomials. In this paper, we interpret the ring Z[x] as the Grothendieck ring of a
suitable additive monoidal category A−pmod of (finitely generated) projective modules over an idem-
potented geometrically defined ring A. Monomials xn become indecomposable projective modules Pn,
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Fig. 1: A diagram in mBn.

while polynomials (x−1)m turn into so-called standard modulesMm. RingA has one more distinguished
family of modules - simple modules Ln. A remarkable feature of these three collections of modules is
the Bernstein–Gelfand–Gelfand (or BGG) reciprocity property [BG76]. Projective modules Pn have a
filtration by standard modules Mm, for m ≤ n, and the multiplicities satisfy the relation:

[Pn :Mm] = [Mm : Ln].

Original examples of algebras and modules with this property are due to J. Bernstein, I. Gelfand, and
S. Gelfand and come up in infinite-dimensional representation theory of simple Lie algebras. The algebra
A has a purely topological-geometric definition, yet satisfies the BGG property. Moreover, the standard
modules Mn have a clear geometric interpretation. An additional sophistication appears due to non-
unitality of algebras A. Instead, they contain an infinite collection of idempotents 1n, n ≥ 0, serving as a
substitute for the unit element 1. Projectives Pn and standard modules Mn are infinite-dimensional, and
the multiplicity [Mm : Ln] should be understood in the generalized sense, as dim(1nMm). We hope that
our approach will lead to geometric interpretation of the BGG reciprocity in many other cases, including
the ones considered by J. Bernstein, I. Gelfand, and S. Gelfand. In the sequel we will generalize this
constructions to categorify the Hermite and Chebyshev polynomials.

2 Diagrammatic algebra
Denote by mBn the set of isotopy classes of planar diagrams (see Fig. 1) which connect k out of m points
on the line x = 0 to k out of n points on the line x = 1 by k arcs called larcs (long arcs), k ≤ min(n,m).
The remaining m− k left and n− k right points extend to short arcs or sarcs, with one endpoint on either
line x = 0 or x = 1 and the other in the interior of the strip 0 < x < 1. We require that the projection of
the resulting 1-manifold onto the x-axis has no critical points. The number of larcs k is called the width
of the diagram. Let mBn(k) and mBn(≤ k) denote the subsets of diagrams in mBn of width k and less
than or equal to k, respectively.

The set mBn has cardinality
(
n+m
n

)
. Let Bn =

∐
n≥0

mBn and B =
∐

n,m≥0
mBn. Given a field k,
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Fig. 2: Concatenation of these two diagrams equals zero since the resulting diagram contains a floating arc.

form k-algebraA as a vector space with the basisB and the multiplication generated by the concatenation
of elements of B. The product is zero if the resulting diagram has an arc which is not attached to the lines
x = 0 or x = 1, called floating arc, Fig. 2. Also, if y ∈ mBn, z ∈ kBl and n 6= k, then the concatenation
is not defined and we set yz = 0. Thus, for any two elements y, z of B the product yz is either 0 or an
element of B.

The composition induces an associative k-algebra structure on A. For each n there exists a unique
diagram in nBn without sarcs. We denote this diagram and its image in A by 1n. These elements are
minimal idempotents in A.

We have A =
⊕

n,m≥0
nAm, where nAm is the vector space with the basis nBm. A is a non-unital

associative algebra with a system of mutually orthogonal idempotents {1n}n≥0.We consider left modules
M over A with the property

M = ⊕
n≥0

1nM.

This property is analogous to the unitality condition 1M = M for modules over a unital algebra. For a
module M , we write Mm for the direct sum of m copies of M .

Let Pn = A1n be the projective A-module Pn with a basis consisting of all diagrams in Bn. Define
Mn, called the standard module, as the quotient of Pn by the submodule spanned by all diagrams which
have right sarcs. Therefore, a basis of Mn is the set of diagrams in Bn with no right sarcs. In particular,
if 1mMn 6= 0 then m ≥ n. Notice that b · a = 0 for any a ∈ Mn and a diagram b ∈ B with at least one
right sarc, Fig. 3.

=0

b ab a

=

Fig. 3: For any diagram a representing an element of a standard module and a diagram b ∈ B with right sarcs the
product b · a = 0.

A left A–module M is called finitely–generated if for some finite subset {m1,m2, . . . ,mk} of M we
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have M = Am1 + · · ·+ Amk. M is finitely generated if and only if it is a quotient of
N⊕

n=0

P an
n for some

an ≥ 0, N ∈ N.
LetA−mod be the category of finitely-generated leftA-modules andA−pmod the category of finitely-

generated projective left A-modules.
Let Ln = k1n be the one-dimensional module over A on which any element of B other than 1n acts

by zero.

Lemma 2.1 Any simple A-module is isomorphic to Ln, for some n ≥ 0.

Theorem 2.2 Any finitely–generated projective left A-module P is isomorphic to a finite direct sum of
indecomposable projective modules Pn,

P ∼=
N
⊕

n=0
P an
n .

The multiplicities an ∈ Z+ are invariants of P .

The projective module Pn has a filtration by standard modules Mm, over m ≤ n. Specifically, consider
the filtration

Pn = Pn(≤ n) ⊃ Pn(≤ n− 1) ⊃ · · · ⊃ Pn(≤ 0) = 0, (1)

where Pn(≤ m) is spanned by the diagrams in Bn of width at most m (equivalently, with at least n −
m right sarcs). Left multiplication by a basis vector cannot increase the width, hence Pn(≤ m) is a
submodule of Pn. The quotient Pn(≤ m)/Pn(≤ m − 1) has a basis of diagrams of width exactly m.

These diagrams can be partitioned into
(
n
m

)
classes enumerated by positions of the n−m right sarcs. The

quotient Pn(≤ m)/Pn(≤ m− 1) is isomorphic to the direct sum of
(
n
m

)
copies of the standard module

Mm. Consequently, we have an equality in the Grothendieck group of the additive category A−mod:

[Pn] =

n∑
m=0

(
n
m

)
[Mm]. (2)

Next, we prove that the non-unital algebra A is Noetherian, hence the category A−mod is abelian.

Proposition 2.3 A submodule of a finitely-generated left A-module is finitely-generated.

The involution of the set B which reflects a diagram about a vertical axis takes nBm to mBn and
induces an anti-involution of A. Hence the ring A is right Noetherian as well.

Definition 2.4 Grothendieck groupK0(A) of finitely generated projectiveA-modules is an abelian group
generated by symbols [P ] of finitely-generated projective left A modules P , with defining relations [P ] =
[P ′] + [P ′′] if P ∼= P ′ ⊕ P ′′.

Proposition 2.5 K0(A) is a free abelian group with basis {[Pn]}n≥0.

Proposition 2.5 follows from Theorem 2.2.
Observe that the existence of the filtration (1) of projective modules Pn by standard modules Mm

implies that Mm has a finite projective resolution P (Mm) by Pn’s, for n ≤ m. Consequently, we can
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view Mm as an object of the category C(A−pmod) of bounded complexes of finitely-generated projec-
tive A-modules. Morphisms in this category are homomorphisms of complexes modulo zero-homotopic
homomorphisms. Grothendieck groups of categoriesA−pmod and C(A−pmod) are canonically isomor-
phic:

K0(C(A−pmod)) ∼= K0(A−pmod)

via the isomorphism taking the symbol of

Q = (. . .→ P i → P i+1 → . . . ) ∈ C(A−pmod) to [Q] =
∑
i∈Z

(−1)i[P i] ∈ K0(A).

Hence, the equality (2) can be interpreted within K0(A).
The transformation matrix from the basis of the symbols [Pn] of indecomposable projective modules to

the basis of symbols [Mm] of standard modules is upper-triangular, with ones on the diagonal and nonzero

coefficients being the binomials
(
n
m

)
. The entries of the inverse matrix are (−1)n+m

(
n
m

)
. Thus we

have the following equation in K0(A):

[Mn] =

n∑
m=0

(−1)n+m

(
n
m

)
[Pm]. (3)

We identify the projective Grothendieck group K0(A) with Z[x] by sending the symbols of projective
modules [Pn] to monomials xn, and define an inner product on the basis {xn}n≥0 by

(xn, xm) = dim Hom(Pn, Pm) = |nBm| =
(
n+m
m

)
(4)

This identification can be justified by introducing a monoidal structure on A−pmod under which Pn⊗
Pm
∼= Pn+m, [KS10].

Under this identification, equation (3) gives

[Mn] =
∑
m≤n

(−1)n+m

(
n
m

)
xm = (x− 1)n, (5)

so the symbols of standard modules [Mn] correspond to (x− 1)n.

Equation (3) hints at the existence of a projective resolution of Mn which starts with Pn and has
(
n
m

)
copies of Pm in the (n−m)-th position:

0→ P0 → . . .→ P

 n
m


n−m → . . .→ P

n
2


n−2 → P

n
1


n−1 → Pn →Mn → 0 (6)

Let us construct this resolution.
Denote the diagram with n larcs and one left sarc at the i-th position by ibn−1 ∈ nBn−1. The diagram

obtained from ibn by a reflection along the vertical axis is denoted by bin ∈ n−1Bn, Fig. 4. The product
of ibn−1 or bin with an arbitrary diagram a ∈ B, when defined and non-zero, differs from the diagram a
in the following way:
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Fig. 4: Diagrams ibn−1 and bin used in defining differentials in projective resolution of standard modules and resolu-
tion of simple by standard modules.

1. a · ij bn turns ij th larc in a diagram a into left sarc,

2. ij bn · a adds left sarc between ith and i+ 1-st larc in a,

3. a · bijn adds right sarc between ith and i+ 1-st larc in a,

4. bijn · a turns ij th larc in a diagram a into right sarc.

Let Im = {i1, . . . , im} ⊆ {1, . . . , n}, i1 < · · · < im be a subset of cardinality m ≤ n. Label

the summands of the m-th term P

 n
m


n−m by these subsets Im, denoting the summand by P Im

n−m. Let
Im,l := Im \ {il}. Removing an element il of the set Im can be interpreted as composing a diagram in
Bn−m on the right with a diagram bpn−m+1, obtained in the following way. Take a diagram biln and delete
all long arcs at positions labeled by elements in Im,l, resulting in a diagram bpn−m+1, where p denotes the
position of il in the ordered set {1, 2, . . . , n} \ Im ∪ {il}, Figures 4 and 5.
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Fig. 5: Differentials d+1
{3,4,5,7} and d+4

{3,4,5,7} in the projective resolution of standard module M7 sending P
{3,4,5,7}
3

into P
{4,5,7}
4 and P

{3,4,5}
4 , respectively. They are determined by composing on the right by diagrams b34 and b44

obtained from diagrams b37 and b77 by deleting dashed larcs corresponding to the label sets of P {4,5,7}4 and P
{3,4,5}
4 .

Next, define the differential

d : P

 n
m


n−m −→ P

 n
m− 1


n−(m−1)
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as the sum

d =
∑
Im

m∑
l=1

dIm,+l
.

of maps dIm,+l : P Im
n−m → P

Im,l

n−(m−1) sending a ∈ P Im
n−m into dIm,+l

(a) = (−1)l−1a · bpn−m+1, For
example, Fig.5 shows how to define the differentials d{1,3,4,5},+5 and d{1,3,4,5},+1 in the resolution of
M7 sending P {1,3,4,5}3 into P {1,3,4}4 and P {3,4,5}4 , respectively.

Proposition 2.6 The complex (6) with the differential defined above is exact.

A finite–dimensional A–module M has a finite filtration with simple modules Ln as subquotients.
Due to one-dimensionality of Ln the multiplicity of Ln in M , denoted by [M : Ln], equals dim1nM . A
finitely-generatedA–moduleM is not necessarily finite dimensional but it satisfies the following property
dim(1nM) <∞, for n ≥ 0, which we call a locally finite–dimensional property.

For locally finite–dimensional module M we define the multiplicity of Ln in M as:

[M : Ln] = dim(1nM). (7)

This definition is compatible with the usual notion of multiplicity of Ln in M as the number of times
Ln appears in the composition series of M when M is finite–dimensional.

Let us now specialize to standard modules Mm. We have

[Mm : Ln] = dim(1nMm) =


(
n
m

)
, for n ≥ m;

0, if n < m.
(8)

Recall that [Pn :Mm] =

(
n
m

)
, hence

[Pn :Mm] = [Mm : Ln]. (9)

Thus, our diagrammatically defined algebra possesses the Bernstein–Gelfand–Gelfand (BGG) reciprocity
property. Indecomposable projective modules Pn have filtration by standard modules Mm, with m ≤ n
and [Pn :Mn] = 1. The multiplicity in the RHS in the equality (9) is understood in the generalized sense,
as explained above.

Proposition 2.7 Homological dimension of slarc algebra standard module Mn is n.

For detailed construction of a resolution of a simple module Lk by standard modules Mm for m ≥ k :

d−→M

k +m
m


k+m

d−→ · · · d−→M

k + 2
2


k+2

d−→M

k + 1
1


k+1

d−→Mk
d−→ Lk −→ 0. (10)

Notice that the m-th term of the resolution is a direct sum M

k +m
m


k+m of standard modules Mk+m.

On the level of diagrams, multiplicity
(
k +m
m

)
represents the number of ways to add m right sarcs to
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a diagram in Mk to obtain a diagram in Mk+m. Let Im = {i1, i2, . . . , im} ⊆ {1, 2, . . . , k +m} be the
set describing positions of added larcs. Each summand M Im

k+m is labeled by one of these subsets, and
the differential will take summand labeled by Im into summands labeled by Im,−l, for 0 < l ≤ m, by
composing on the right with diagrams containing a single short right arc and no left sarcs, see Fig. 4.

Informally, on the level of Grothendieck groups we have the following relation:

[Ln] =

∞∑
k=0

(−1)k
(
n+ k

k

)
[Mn+k]

=

∞∑
k=0

(−1)k
(
n+ k

k

)
(x− 1)n+k =

(x− 1)n

xn+1
.

This infinite sum does not play a direct role in our categorification, but we can obtain projective resolu-
tion of a simple module Ln via constructing a bicomplex, with a projective resolution (6) ofMn+k, k ≥ 0
lying above each copy of a standard module in the resolution (10) of simple modules Ln by standard
modules Mm, m ≥ n.

This construction can be summarized by saying that suitably defined Grothendieck ring of category of
bounded complexes of projective modules is isomorphic to the one-variable polynomial ring Z[x] with
the following correspondence:

[Pn] =

n∑
m=0

(
n
m

)
[Mm] ↔ xn =

n∑
m=0

(
n
m

)
(x− 1)m

[Mn] =
∑
m≤n

(−1)n+m

(
n
m

)
[Pm] ↔ (x− 1)n =

∑
m≤n

(−1)n+m

(
n
m

)
xm

for more details and the background see [Ben91], [Wei94], [GM96], [Mil], and [KS10]. This construction
can be generalized to the categorification of various orthogonal polynomials by varying the underlying
diagrammatic algebra.

3 Approximations of the identity
Various operations on polynomials can be lifted to the categorified setting. In this section we define a
functor which corresponds to the truncation of polynomials on the level of Grothendieck group. Recall

that B(≤ k) =

k⊔
i=0

B(i) denotes diagrams in B of width less than or equal to k. Let A(≤ k), k ≥ 0

denote the subspace of A spanned by diagrams in B(≤ k). This subspace is an A–subbimodule of A.
Let A(k) be the quotient subbimodule A(≤ k)/A(≤ k − 1). Let nP denote a right projective module
nP = 1nA and, analogously to the standard modulesMn, let nM be the quotient of nP by the submodule
spanned by all diagrams with a left sarcs. One can think of diagrams of nM as reflections along vertical
axis of diagrams in Mn.

Proposition 3.1 A(≤ k)/A(≤ k − 1) ∼=Mk ⊗k kM as A-bimodules (Fig. 6).

For a given k ≥ 0 , define a right exact functor Fk : A−mod→ A−mod by

Fk(M) = A(≤ k)⊗A M, (11)
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Fig. 6: Diagram in B(4) viewed as a product of elements in M4 and 4M .

for an A-module M. The image of the standard module Mm under functor Fk is:

A(≤ k)⊗A Mm =

{
Mm, if k ≥ m;
0, otherwise. (12)

By definition Pm = A1m, hence A(≤ k) ⊗A Pm = A(≤ k) ⊗A A1m = A(≤ k)1m, and this is a
submodule of Pm spanned by diagrams of width less than or equal to k:

Fk(Pm) = A(≤ k)⊗A Pm =

{
Pm, if k ≥ m;
Pm(≤ k), if k < m. (13)

In the Grothendieck group, projective modules Pn correspond to xn and standard modules Mn to
(x − 1)n. Modules Pn(≤ k) have finite homological dimension, since they admit finite filtrations with
successive quotients isomorphic to standard modules. Therefore, functor Fk descends to an operator on

the Grothendieck group K0(A), denoted by [Fk]. The action of [Fk] on [Pn] =

n∑
m=0

(
n
m

)
[Mm] is equal

to:

[Fk][Pn] =


[Pn] = xn, if k ≥ n;
k∑

m=0

(
n
m

)
[Mm] =

k∑
m=0

(
n
m

)
(x− 1)m, if k < n.

(14)

Since all higher derived functors of Fk are zero on standard modules, for k ≥ n operator [Fk] acts via
identity on [Pn], and for k < n it approximates identity and can be viewed as taking the first k + 1 terms
k∑

m=0

(
n
m

)
[Mm] in the expansion of [Pn] in the basis {(x− 1)m}m≥0.

4 Cabling functors
For every A–module M and a positive integer k construct the corresponding cabled module [k]M in the
following way:

1n
[k]M = 1nkM, hence [k]M = ⊕

n≥0
1nkM. (15)
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Fig. 7: A diagram y ∈ 11B6 and 2-cable [2]y ∈ 22B12.

Given a diagram y ∈ sBl, construct a diagram [k]y ∈ skBlk, called the k-cabling of y, by taking k
parallel copies of each arc (Fig. 7). For example, [k]1n = 1nk. By definition, the action of an element
α ∈ A on [k]Mn is the regular action of its k-cabling αk.

What is the result of k-cabling simple, standard and projective modules? It is easy to see that, if k
divides n, the k-cabling of the simple module Ln is the module Ln/k :

1m
[k]Ln = 1kmLn =

{
k, if km = n;
0, otherwise. (16)

If k does not divide n the result is zero, [k]Ln = 0.
Recall that basis elements of standard A modules Mn correspond to diagrams in Bn with n through

arcs and an arbitrary number of left sarcs. Let S(n, k, i) denote the number of ways to select n numbers
between 1 and ki such that each of the sets {kj + 1, . . . , k(j + 1)}0≤j<i contains at least one of the
selected numbers.

Proposition 4.1
[k]Mn

∼=
n
⊕

i=dnk e
M

S(n,k,i)
i (17)

Proof: The proof is left to the reader following examples shown on Fig. 8. S(n, k, i) is the sum of

products
i∏

j=1

(
k
λj

)
, over all possible partitions λ = (λ1, . . . , λi) of n into i blocks of length at most k. 2

Example 4.2 We compute cabling modules of Mn for small values of n:

• [k]M0 =M0, [k]M1 =Mk
1 ,

• [k]M2 =Mk2

2 ⊕M

(
k
2

)
1 ,
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2
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4

6

(a)                                                                             (b)

Fig. 8: (a) 2-cabling of M3; (b) 4-cabling of M3 corresponding to the partition (2, 1): 2 arcs in the same part
contribute 6 hence, the total contribution is 24.

• [k]M3 =Mk3

3 ⊕M
2

(
k
1

)(
k
2

)
2 ⊕M

(
k
3

)
1 .

Studying cablings of projective modules reduces to the case of standard modules: [k]Pn has a filtration

with the i-th term consisting of
(
n
i

)
[k]Mi, based on the filtration (1) of Pn by Pn(i), i ≤ n.

Cabling functor [k] is exact, sending an A-module M to its k-cabled module [k]M , and categorifies the
following operator on the Grothendieck group:

[Mn] = (x− 1)n 7→ [[k]Mn] =

n∑
i=dnk e

S(n, k, i)(x− 1)i. (18)

In the following paper we will further explore the structure and functors this categorification admits. For
example, notice that [s][k]M ∼= [ks]M functorially in M . This identity indicates that the cabling operator
may correspond to a certain plethysm on the polynomial ring. Moreover, we will generalize this construc-
tion using a slightly different diagrammatics to category certain classes of orthogonal polynomials, such
as Chebyshev and Hermite.
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